-
公开(公告)号:US20190266418A1
公开(公告)日:2019-08-29
申请号:US16286329
申请日:2019-02-26
Applicant: NVIDIA Corporation
Inventor: Yifang Xu , Xin Liu , Chia-Chih Chen , Carolina Parada , Davide Onofrio , Minwoo Park , Mehdi Sajjadi Mohammadabadi , Vijay Chintalapudi , Ozan Tonkal , John Zedlewski , Pekka Janis , Jan Nikolaus Fritsch , Gordon Grigor , Zuoguan Wang , I-Kuei Chen , Miguel Sainz
Abstract: In various examples, sensor data representative of an image of a field of view of a vehicle sensor may be received and the sensor data may be applied to a machine learning model. The machine learning model may compute a segmentation mask representative of portions of the image corresponding to lane markings of the driving surface of the vehicle. Analysis of the segmentation mask may be performed to determine lane marking types, and lane boundaries may be generated by performing curve fitting on the lane markings corresponding to each of the lane marking types. The data representative of the lane boundaries may then be sent to a component of the vehicle for use in navigating the vehicle through the driving surface.
-
公开(公告)号:US12266148B2
公开(公告)日:2025-04-01
申请号:US18309882
申请日:2023-05-01
Applicant: NVIDIA Corporation
Inventor: Yifang Xu , Xin Liu , Chia-Chih Chen , Carolina Parada , Davide Onofrio , Minwoo Park , Mehdi Sajjadi Mohammadabadi , Vijay Chintalapudi , Ozan Tonkal , John Zedlewski , Pekka Janis , Jan Nikolaus Fritsch , Gordon Grigor , Zuoguan Wang , I-Kuei Chen , Miguel Sainz
IPC: G06V10/44 , G05D1/00 , G06F18/2413 , G06N3/084 , G06T7/10 , G06V10/46 , G06V10/764 , G06V10/82 , G06V20/40 , G06V20/56
Abstract: In various examples, sensor data representative of an image of a field of view of a vehicle sensor may be received and the sensor data may be applied to a machine learning model. The machine learning model may compute a segmentation mask representative of portions of the image corresponding to lane markings of the driving surface of the vehicle. Analysis of the segmentation mask may be performed to determine lane marking types, and lane boundaries may be generated by performing curve fitting on the lane markings corresponding to each of the lane marking types. The data representative of the lane boundaries may then be sent to a component of the vehicle for use in navigating the vehicle through the driving surface.
-
公开(公告)号:US20230074368A1
公开(公告)日:2023-03-09
申请号:US18054288
申请日:2022-11-10
Applicant: NVIDIA Corporation
Inventor: Mansi Rankawat , Jian Yao , Dong Zhang , Chia-Chih Chen
Abstract: In various examples, sensor data may be received that represents a field of view of a sensor of a vehicle located in a physical environment. The sensor data may be applied to a machine learning model that computes both a set of boundary points that correspond to a boundary dividing drivable free-space from non-drivable space in the physical environment and class labels for boundary points of the set of boundary points that correspond to the boundary. Locations within the physical environment may be determined from the set of boundary points represented by the sensor data, and the vehicle may be controlled through the physical environment within the drivable free-space using the locations and the class labels.
-
公开(公告)号:US11941873B2
公开(公告)日:2024-03-26
申请号:US18054288
申请日:2022-11-10
Applicant: NVIDIA Corporation
Inventor: Mansi Rankawat , Jian Yao , Dong Zhang , Chia-Chih Chen
IPC: G06V10/82 , G05D1/00 , G06F18/2413 , G06N3/08 , G06T7/11 , G06V20/58 , G06V30/19 , G06V30/194 , G06V20/56
CPC classification number: G06V10/82 , G05D1/0088 , G05D1/0246 , G06F18/24143 , G06N3/08 , G06T7/11 , G06V20/58 , G06V30/19173 , G06V30/194 , G05D2201/0213 , G06T2207/30252 , G06V20/588
Abstract: In various examples, sensor data may be received that represents a field of view of a sensor of a vehicle located in a physical environment. The sensor data may be applied to a machine learning model that computes both a set of boundary points that correspond to a boundary dividing drivable free-space from non-drivable space in the physical environment and class labels for boundary points of the set of boundary points that correspond to the boundary. Locations within the physical environment may be determined from the set of boundary points represented by the sensor data, and the vehicle may be controlled through the physical environment within the drivable free-space using the locations and the class labels.
-
公开(公告)号:US20190286153A1
公开(公告)日:2019-09-19
申请号:US16355328
申请日:2019-03-15
Applicant: NVIDIA Corporation
Inventor: Mansi Rankawat , Jian Yao , Dong Zhang , Chia-Chih Chen
Abstract: In various examples, sensor data may be received that represents a field of view of a sensor of a vehicle located in a physical environment. The sensor data may be applied to a machine learning model that computes both a set of boundary points that correspond to a boundary dividing drivable free-space from non-drivable space in the physical environment and class labels for boundary points of the set of boundary points that correspond to the boundary. Locations within the physical environment may be determined from the set of boundary points represented by the sensor data, and the vehicle may be controlled through the physical environment within the drivable free-space using the locations and the class labels.
-
公开(公告)号:US20250139934A1
公开(公告)日:2025-05-01
申请号:US19005672
申请日:2024-12-30
Applicant: NVIDIA Corporation
Inventor: Yifang Xu , Xin Liu , Chia-Chih Chen , Carolina Parada , Davide Onofrio , Minwoo Park , Mehdi Sajjadi Mohammadabadi , Vijay Chintalapudi , Ozan Tonkal , John Zedlewski , Pekka Janis , Jan Nikolaus Fritsch , Gordon Grigor , Zuoguan Wang , I-Kuei Chen , Miguel Sainz
IPC: G06V10/44 , G06F18/2413 , G06N3/084 , G06T7/10 , G06V10/46 , G06V10/764 , G06V10/82 , G06V20/40 , G06V20/56
Abstract: In various examples, sensor data representative of an image of a field of view of a vehicle sensor may be received and the sensor data may be applied to a machine learning model. The machine learning model may compute a segmentation mask representative of portions of the image corresponding to lane markings of the driving surface of the vehicle. Analysis of the segmentation mask may be performed to determine lane marking types, and lane boundaries may be generated by performing curve fitting on the lane markings corresponding to each of the lane marking types. The data representative of the lane boundaries may then be sent to a component of the vehicle for use in navigating the vehicle through the driving surface.
-
公开(公告)号:US11676364B2
公开(公告)日:2023-06-13
申请号:US17222680
申请日:2021-04-05
Applicant: NVIDIA Corporation
Inventor: Yifang Xu , Xin Liu , Chia-Chih Chen , Carolina Parada , Davide Onofrio , Minwoo Park , Mehdi Sajjadi Mohammadabadi , Vijay Chintalapudi , Ozan Tonkal , John Zedlewski , Pekka Janis , Jan Nikolaus Fritsch , Gordon Grigor , Zuoguan Wang , I-Kuei Chen , Miguel Sainz
IPC: G06V10/44 , G06T7/10 , G05D1/00 , G06N3/084 , G05D1/02 , G06V20/56 , G06V10/46 , G06V20/40 , G06F18/2413 , G06V10/764 , G06V10/82
CPC classification number: G06V10/44 , G05D1/0088 , G05D1/0221 , G06F18/24143 , G06N3/084 , G06T7/10 , G06V10/457 , G06V10/46 , G06V10/764 , G06V10/82 , G06V20/41 , G06V20/588 , G06V10/471
Abstract: In various examples, sensor data representative of an image of a field of view of a vehicle sensor may be received and the sensor data may be applied to a machine learning model. The machine learning model may compute a segmentation mask representative of portions of the image corresponding to lane markings of the driving surface of the vehicle. Analysis of the segmentation mask may be performed to determine lane marking types, and lane boundaries may be generated by performing curve fitting on the lane markings corresponding to each of the lane marking types. The data representative of the lane boundaries may then be sent to a component of the vehicle for use in navigating the vehicle through the driving surface.
-
公开(公告)号:US11537139B2
公开(公告)日:2022-12-27
申请号:US16355328
申请日:2019-03-15
Applicant: NVIDIA Corporation
Inventor: Mansi Rankawat , Jian Yao , Dong Zhang , Chia-Chih Chen
Abstract: In various examples, sensor data may be received that represents a field of view of a sensor of a vehicle located in a physical environment. The sensor data may be applied to a machine learning model that computes both a set of boundary points that correspond to a boundary dividing drivable free-space from non-drivable space in the physical environment and class labels for boundary points of the set of boundary points that correspond to the boundary. Locations within the physical environment may be determined from the set of boundary points represented by the sensor data, and the vehicle may be controlled through the physical environment within the drivable free-space using the locations and the class labels.
-
公开(公告)号:US20210224556A1
公开(公告)日:2021-07-22
申请号:US17222680
申请日:2021-04-05
Applicant: NVIDIA Corporation
Inventor: Yifang Xu , Xin Liu , Chia-Chih Chen , Carolina Parada , Davide Onofrio , Minwoo Park , Mehdi Sajjadi Mohammadabadi , Vijay Chintalapudi , Ozan Tonkal , John Zedlewski , Pekka Janis , Jan Nikolaus Fritsch , Gordon Grigor , Zuoguan Wang , I-Kuei Chen , Miguel Sainz
IPC: G06K9/00 , G06K9/32 , G06T7/10 , G05D1/00 , G06N3/08 , G05D1/02 , G06K9/46 , G06K9/48 , G06K9/62
Abstract: In various examples, sensor data representative of an image of a field of view of a vehicle sensor may be received and the sensor data may be applied to a machine learning model. The machine learning model may compute a segmentation mask representative of portions of the image corresponding to lane markings of the driving surface of the vehicle. Analysis of the segmentation mask may be performed to determine lane marking types, and lane boundaries may be generated by performing curve fitting on the lane markings corresponding to each of the lane marking types. The data representative of the lane boundaries may then be sent to a component of the vehicle for use in navigating the vehicle through the driving surface.
-
公开(公告)号:US10997433B2
公开(公告)日:2021-05-04
申请号:US16286329
申请日:2019-02-26
Applicant: NVIDIA Corporation
Inventor: Yifang Xu , Xin Liu , Chia-Chih Chen , Carolina Parada , Davide Onofrio , Minwoo Park , Mehdi Sajjadi Mohammadabadi , Vijay Chintalapudi , Ozan Tonkal , John Zedlewski , Pekka Janis , Jan Nikolaus Fritsch , Gordon Grigor , Zuoguan Wang , I-Kuei Chen , Miguel Sainz
IPC: G06K9/00 , G06K9/32 , G06T7/10 , G05D1/00 , G06N3/08 , G05D1/02 , G06K9/46 , G06K9/48 , G06K9/62
Abstract: In various examples, sensor data representative of an image of a field of view of a vehicle sensor may be received and the sensor data may be applied to a machine learning model. The machine learning model may compute a segmentation mask representative of portions of the image corresponding to lane markings of the driving surface of the vehicle. Analysis of the segmentation mask may be performed to determine lane marking types, and lane boundaries may be generated by performing curve fitting on the lane markings corresponding to each of the lane marking types. The data representative of the lane boundaries may then be sent to a component of the vehicle for use in navigating the vehicle through the driving surface.
-
-
-
-
-
-
-
-
-