Abstract:
Methods and systems for a networked storage environment are provided. One method includes mirroring a plurality of requests from a switch and transmitting the mirrored plurality of requests to a remote acquisition unit; extracting application layer protocol data units from assembled transport layer packets; parsing the application layer protocol data units to obtain file system requests; identifying storage volume identifiers from the parsed file system requests that are associated with a greatest number of operations; identifying network addresses for client systems initiating the greatest number of operations for the storage volumes and network addresses of target storage systems managing the storage volumes; and providing a total number of operations for the plurality of requests in a given time, the identified storage volume identifiers, the network addresses of the client systems and the network addresses of the target storage systems to a management console.
Abstract:
Methods and systems for a networked storage environment are provided. One method includes mirroring a plurality of requests from a switch and transmitting the mirrored plurality of requests to a remote acquisition unit; extracting application layer protocol data units from assembled transport layer packets; parsing the application layer protocol data units to obtain file system requests; identifying storage volume identifiers from the parsed file system requests that are associated with a greatest number of operations; identifying network addresses for client systems initiating the greatest number of operations for the storage volumes and network addresses of target storage systems managing the storage volumes; and providing a total number of operations for the plurality of requests in a given time, the identified storage volume identifiers, the network addresses of the client systems and the network addresses of the target storage systems to a management console.
Abstract:
Systems and methods for hierarchical reference counting via sibling trees are provided. The hierarchical data structure, together with its associated operations, can efficiently maintain reference counts and significantly reduce input/output (IO) operations compared to traditional techniques. The data structure presented here is applicable to any directed acyclic graph (DAG-type) structure where reference counts are used. Various embodiments of the present invention use a data structure to maintain a “sibling pointer” (pointing to the sibling node as a way to avoid reference count updates) and a “sibling count.” When nodes in the tree diverge, the sibling pointer and sibling count are updated as opposed to directly manipulating the reference counts of the children of the diverging nodes. Various other embodiments can use additional entries or fields that allow for improved efficiency and advantages.
Abstract:
Methods and systems for a networked storage environment are provided. One method includes mirroring a plurality of requests from a switch and transmitting the mirrored plurality of requests to a remote acquisition unit; extracting application layer protocol data units from assembled transport layer packets; parsing the application layer protocol data units to obtain file system requests; identifying storage volume identifiers from the parsed file system requests that are associated with a greatest number of operations; identifying network addresses for client systems initiating the greatest number of operations for the storage volumes and network addresses of target storage systems managing the storage volumes; and providing a total number of operations for the plurality of requests in a given time, the identified storage volume identifiers, the network addresses of the client systems and the network addresses of the target storage systems to a management console.
Abstract:
Methods and systems for a networked storage environment are provided. One method includes mirroring a plurality of requests from a switch and transmitting the mirrored plurality of requests to a remote acquisition unit; extracting application layer protocol data units from assembled transport layer packets; parsing the application layer protocol data units to obtain file system requests; identifying storage volume identifiers from the parsed file system requests that are associated with a greatest number of operations; identifying network addresses for client systems initiating the greatest number of operations for the storage volumes and network addresses of target storage systems managing the storage volumes; and providing a total number of operations for the plurality of requests in a given time, the identified storage volume identifiers, the network addresses of the client systems and the network addresses of the target storage systems to a management console.
Abstract:
Systems and methods for hierarchical reference counting via sibling trees are provided. The hierarchical data structure, together with its associated operations, can efficiently maintain reference counts and significantly reduce input/output (IO) operations compared to traditional techniques. The data structure presented here is applicable to any directed acyclic graph (DAG-type) structure where reference counts are used. Various embodiments of the present invention use a data structure to maintain a “sibling pointer” (pointing to the sibling node as a way to avoid reference count updates) and a “sibling count.” When nodes in the tree diverge, the sibling pointer and sibling count are updated as opposed to directly manipulating the reference counts of the children of the diverging nodes. Various other embodiments can use additional entries or fields that allow for improved efficiency and advantages.