Abstract:
Systems and methods automatically locate optical surfaces of an eye and automatically generate surface models of the optical surfaces. A method includes OCT scanning of an eye. Returning portions of a sample beam are processed to locate a point on the optical surface and first locations on the optical surface within a first radial distance of the point. A first surface model of the optical surface is generated based on the location of the point and the first locations. Returning portions of the sample beam are processed so as to detect second locations on the optical surface beyond the first radial distance and within a second radial distance from the point. A second surface model of the optical surface is generated based on the location of the point on the optical surface and the first and second locations on the optical surface.
Abstract:
A laser eye surgery system includes a laser to generate a laser beam. A topography measurement system measures corneal topography. A processor is coupled to the laser and the topography measurement system, the processor embodying instructions to measure a first corneal topography of the eye. A first curvature of the cornea is determined. A target curvature of the cornea that treats the eye is determined. A first set of incisions and a set of partial incisions in the cornea smaller than the first set of incisions are determined. The set of partial incisions is incised on the cornea by the laser beam. A second corneal topography is measured. A second curvature of the cornea is determined. The second curvature is determined to differ from the target curvature and a second set of incisions are determined. The second set of incisions is incised on the cornea.
Abstract:
Systems and methods automatically locate optical surfaces of an eye and automatically generate surface models of the optical surfaces. A method includes OCT scanning of an eye. Returning portions of a sample beam are processed to locate a point on the optical surface and first locations on the optical surface within a first radial distance of the point. A first surface model of the optical surface is generated based on the location of the point and the first locations. Returning portions of the sample beam are processed so as to detect second locations on the optical surface beyond the first radial distance and within a second radial distance from the point. A second surface model of the optical surface is generated based on the location of the point on the optical surface and the first and second locations on the optical surface.
Abstract:
A laser surgery system includes a light source, an eye interface device, a scanning assembly, a confocal detection assembly and preferably a confocal bypass assembly. The light source generates an electromagnetic beam. The scanning assembly scans a focal point of the electromagnetic beam to different locations within the eye. An optical path propagates the electromagnetic beam from a light source to the focal point, and also propagates a portion of the electromagnetic beam reflected from the focal point location back along at least a portion of the optical path. The optical path includes an optical element associated with a confocal detection assembly that diverts a portion of the reflected electromagnetic radiation to a sensor. The sensor generates an intensity signal indicative of intensity the electromagnetic beam reflected from the focal point location. The confocal bypass assembly reversibly diverts the electromagnetic beam along a diversion optical path around the optical element.
Abstract:
Additive manufacturing techniques are used to form an artificial intra-ocular lens (IOL) directly inside the human eye. Small openings are formed in the cornea and lens capsule of the eye, and the crystalline lens is broken up and removed through the openings; then, a material is injected into the lens capsule through the openings, and the focal spot of a pulse laser beam is scanned in a defined pattern in the lens capsule, to transform the material in the vicinity of the lase focal spot to form the IOL in a layer-by-layer manner. In one embodiment, stereolithography techniques are used where a pulse UV laser source is used to photosolidify a photopolymer resin. The liquefied resin is injected into the eye through the openings, after which only part of the resin, having the shape of the desired IOL, is selectively cured with the UV laser beam, via progressive layer formation.
Abstract:
A method of blink detection in a laser eye surgical system includes providing a topography measurement structure having a geometric marker. The method includes bringing the topography measurement structure into a position proximal to an eye such that light traveling from the geometric marker is capable of reflecting off a refractive structure of the eye of the patient, and also detecting the light reflected from the structure of the eye for a predetermined time period while the topography measurement structure is at the proximal position. The method further includes converting the light reflected from the surface of the eye into image data and analyzing the image data to determine whether light reflected from the geometric marker is present is in the reflected light, wherein if the geometric marker is determined not to be present, the patient is identified as having blinked during the predetermined time.
Abstract:
A method for measuring the intraocular pressure (IOP) of an eye docked to an ophthalmic surgical laser system via a patient interface assembly. While the eye is docked to the laser system, and as the vertical force exerted on the eye by the patient interface fluctuates as the patient breaths and moves, the amount of corneal deformation is continuously measured by an optical coherence tomography device of the laser system and the force exerted on the eye is continuously measured by force sensors integrated in the patient interface assembly. Based on the real-time force signal and real-time corneal deformation signal, a controller calculates a linear relationship between force and corneal deformation, and determines the IOP of the docked eye by comparing a slope of the linear relationship against a pre-established slope vs. IOP calibration curve. The IOP of the docked eye can be used when setting laser treatment parameters.
Abstract:
A method and surgical system including a laser source for generating a pulsed laser beam, an imaging system including a detector, shared optics configured for directing the pulsed laser beam to an object to be sampled and confocally deflecting back-reflected light from the object to the detector, a patient interface, through which the pulsed laser beam is directed, the patient interface having, a cup with a large and small opening, and a notched ring inside the cup; and a controller operatively coupled to the laser source, the imaging system and the shared optics, the controller configured to align the eye for procedure.
Abstract:
A method of reversibly separating an imaging assembly from an optical path in a laser surgical system includes generating an electromagnetic beam, propagating the electromagnetic beam from the beam source to a scanner along an optical path, the optical path comprising a first optical element that attenuates the electromagnetic beam, reversibly inserting a confocal bypass assembly into the optical path, diverting the electromagnetic beam along a diversion optical path around the first optical element, wherein the confocal bypass assembly automatically exits the optical path when a power loss occurs to one or more components of the system.
Abstract:
A laser eye surgery system includes a laser to generate a laser beam. A topography measurement system measures corneal topography. A processor is coupled to the laser and the topography measurement system, the processor embodying instructions to measure a first corneal topography of the eye. A first curvature of the cornea is determined. A target curvature of the cornea that treats the eye is determined. A first set of incisions and a set of partial incisions in the cornea smaller than the first set of incisions are determined. The set of partial incisions is incised on the cornea by the laser beam. A second corneal topography is measured. A second curvature of the cornea is determined. The second curvature is determined to differ from the target curvature and a second set of incisions are determined. The second set of incisions is incised on the cornea.