摘要:
Systems and methods for increasing the power and resource efficiency of a mobile network device are presented herein. More particularly, described herein is a novel Tail Optimization Protocol (TOP) and/or other mechanisms, systems and methods for enabling cooperation between a mobile device and an associated radio access network to eliminate idle periods (e.g., tails) when possible. Various systems and methods described herein can leverage the ability of applications and/or their associated connections to accurately predict a long tail time, from which a mobile device can notify an associated cellular network on such an imminent tail in order to allow the cellular network to immediately release tail resources. Various other aspects provided herein realize TOP via fast dormancy and/or other similar notification mechanisms, which enable a handset or other device to notify a cellular network for immediate resource release.
摘要:
A system for visualization of performance measurements is disclosed. The system may include an electronic data processor configured to receive a stream of the performance measurements and select a maximum number of leaf nodes of a plurality of nodes for use in an adaptive decision tree. Additionally, the electronic processor may be configured to determine a depth of each branch in the adaptive decision tree needed to differentiate performance among internet protocol addresses in an internet protocol prefix of each node. Each of the plurality of nodes may be annotated with a predicted latency category and the processor may be configured to generate the adaptive decision tree based on the maximum number of leaf nodes selected, the depth of each branch determined, the predicted latency category, and on the stream of performance measurements associated with the network. Moreover, the processor may display the adaptive decision tree.
摘要:
Systems and methods for analyzing mobile device applications within a wireless data network are presented herein. More particularly, described herein is a novel Intelligent Mobility Application Profiling Tool (iMAP) and/or other mechanisms, systems and methods for profiling and benchmarking applications associated with mobile devices in a wireless data network. Various systems and methods described herein expose cross-layer interaction associated with a network device in order to profile an application on the network device with respect to energy efficiency, performance, and functionality. As described herein, radio resource control (RRC) analysis can be performed to infer RRC states associated with a given application, identify tail time, etc. Further, analyzers are employed for various layers, including transmission control protocol (TCP) and/or hypertext transfer protocol (HTTP), as well as to analyze communication bursts associated with a given application. Analysis results are subsequently utilized to deliver application profiling results to a user.
摘要:
An application provisioning device may be used to manage a profile of a host and provide data corresponding to a selected application for installation at a host. A reverse firewall may use the profile of the host to determine whether to allow or block particular network communication from an application running on the host. An indication of a selected application may be received at the application provisioning device. Configuration information may also be received at the application provisioning device. The application provisioning server may request an update to the profile of a host and transmit such a request. The profile may be updated to reflect the configuration information and/or information of the selected application. Data corresponding to the selected application may be updated and transmitted to a host computer, where it may be installed. Therefore, the installed application running on the host may operate without being prematurely blocked by the reverse firewall.
摘要:
A packet trace is received. Inter-arrival times between the multiple packets in the packet trace are determined. An inter-arrival time in the inter-arrival times that is greater than a threshold is identified. An order number of the inter-arrival time is identified. A determination is made as to whether a size of each of at least a portion of the multiple packets is equal to a maximum segment size. When a determination is made that the size of each of at least a portion of the multiple packets is equal to the maximum segment size, a size of the ICW as a product of the order number and the maximum segment size is returned.
摘要:
A method, a computer readable medium and an apparatus for providing a dynamic inactivity timer are disclosed. For example, the method monitors a timer for a time threshold associated with a burst of a plurality of bursts of packets, and determines if the timer for the time threshold associated with the burst has expired. The method predicts an inter-burst time for the burst, if the timer for the time threshold associated with the burst has expired and sets the dynamic inactivity timer in accordance with the inter-burst time for the burst.
摘要:
A method, computer readable medium and apparatus for performing a demotion in a cellular communications network are disclosed. For example, the method receives a packet indicating that a batching transfer is completed, determines if a background packet was received after receiving the packet indicating that the batching transfer is completed and demotes a state of a state machine implemented by a radio network controller to a lower state if the background packet was not received.
摘要:
Systems and methods for increasing the power and resource efficiency of a mobile network device are presented herein. More particularly, described herein is a novel Tail Optimization Protocol (TOP) and/or other mechanisms, systems and methods for enabling cooperation between a mobile device and an associated radio access network to eliminate idle periods (e.g., tails) when possible. Various systems and methods described herein can leverage the ability of applications and/or their associated connections to accurately predict a long tail time, from which a mobile device can notify an associated cellular network on such an imminent tail in order to allow the cellular network to immediately release tail resources. Various other aspects provided herein realize TOP via fast dormancy and/or other similar notification mechanisms, which enable a handset or other device to notify a cellular network for immediate resource release.
摘要:
A packet trace is received. Inter-arrival times between the multiple packets in the packet trace are determined. An inter-arrival time in the inter-arrival times that is greater than a threshold is identified. An order number of the inter-arrival time is identified. A determination is made as to whether a size of each of at least a portion of the multiple packets is equal to a maximum segment size. When a determination is made that the size of each of at least a portion of the multiple packets is equal to the maximum segment size a size of the ICW as a product of the order number and the maximum segment size is returned.
摘要:
A packet trace is received. The packet trace is transformed into a sequence of pulse signals in a temporal domain. The sequence of pulse signals in the temporal domain is transformed into a sequence of pulse signals in a frequency domain. Peaks are detected within relevant frequency bands in the sequence of pulse signals in the frequency domain. A fundamental frequency is identified within the peaks. The fundamental frequency, which represents the TCP flow clock, is returned.