SYSTEMS AND METHODS FOR MULTIVARIATE ANOMALY DETECTION IN SOFTWARE MONITORING

    公开(公告)号:US20200351283A1

    公开(公告)日:2020-11-05

    申请号:US16400392

    申请日:2019-05-01

    Abstract: Techniques are disclosed for summarizing, diagnosing, and correcting the cause of anomalous behavior in computing systems. In some embodiments, a system identifies a plurality of time series that track different metrics over time for a set of one or more computing resources. The system detects a first set of anomalies in a first time series that tracks a first metric and assigns a different respective range of time to each anomaly. The system determines whether the respective range of time assigned to an anomaly overlaps with timestamps or ranges of time associated with anomalies from one or more other time series. The system generates at least one cluster that groups metrics based on how many anomalies have respective ranges of time and/or timestamps that overlap. The system may preform, based on the cluster, one or more automated actions for diagnosing or correcting a cause of anomalous behavior.

    SYSTEMS AND METHODS FOR MULTIVARIATE ANOMALY DETECTION IN SOFTWARE MONITORING

    公开(公告)号:US20230075486A1

    公开(公告)日:2023-03-09

    申请号:US18055773

    申请日:2022-11-15

    Abstract: Techniques are disclosed for summarizing, diagnosing, and correcting the cause of anomalous behavior in computing systems. In some embodiments, a system identifies a plurality of time series that track different metrics over time for a set of one or more computing resources. The system detects a first set of anomalies in a first time series that tracks a first metric and assigns a different respective range of time to each anomaly. The system determines whether the respective range of time assigned to an anomaly overlaps with timestamps or ranges of time associated with anomalies from one or more other time series. The system generates at least one cluster that groups metrics based on how many anomalies have respective ranges of time and/or timestamps that overlap. The system may preform, based on the cluster, one or more automated actions for diagnosing or correcting a cause of anomalous behavior.

    Systems and methods for multivariate anomaly detection in software monitoring

    公开(公告)号:US11533326B2

    公开(公告)日:2022-12-20

    申请号:US16400392

    申请日:2019-05-01

    Abstract: Techniques are disclosed for summarizing, diagnosing, and correcting the cause of anomalous behavior in computing systems. In some embodiments, a system identifies a plurality of time series that track different metrics over time for a set of one or more computing resources. The system detects a first set of anomalies in a first time series that tracks a first metric and assigns a different respective range of time to each anomaly. The system determines whether the respective range of time assigned to an anomaly overlaps with timestamps or ranges of time associated with anomalies from one or more other time series. The system generates at least one cluster that groups metrics based on how many anomalies have respective ranges of time and/or timestamps that overlap. The system may preform, based on the cluster, one or more automated actions for diagnosing or correcting a cause of anomalous behavior.

Patent Agency Ranking