DATA DRIVEN METHODS AND SYSTEMS FOR WHAT IF ANALYSIS

    公开(公告)号:US20210073680A1

    公开(公告)日:2021-03-11

    申请号:US17028166

    申请日:2020-09-22

    Abstract: Techniques are described for applying what-f analytics to simulate performance of computing resources in cloud and other computing environments. In one or more embodiments, a plurality of time-series datasets are received including time-series datasets representing a plurality of demands on a resource and datasets representing performance metrics for a resource. Based on the datasets at least one demand propagation model and at least one resource prediction model are trained. Responsive to receiving an adjustment to a first set of one or more values associated with a first demand: (a) a second adjustment is generated for a second set of one or more values associated with a second demand; and (b) a third adjustment is generated for a third set of one or more values that is associated with the resource performance metric.

    SYSTEMS AND METHODS FOR MULTIVARIATE ANOMALY DETECTION IN SOFTWARE MONITORING

    公开(公告)号:US20200351283A1

    公开(公告)日:2020-11-05

    申请号:US16400392

    申请日:2019-05-01

    Abstract: Techniques are disclosed for summarizing, diagnosing, and correcting the cause of anomalous behavior in computing systems. In some embodiments, a system identifies a plurality of time series that track different metrics over time for a set of one or more computing resources. The system detects a first set of anomalies in a first time series that tracks a first metric and assigns a different respective range of time to each anomaly. The system determines whether the respective range of time assigned to an anomaly overlaps with timestamps or ranges of time associated with anomalies from one or more other time series. The system generates at least one cluster that groups metrics based on how many anomalies have respective ranges of time and/or timestamps that overlap. The system may preform, based on the cluster, one or more automated actions for diagnosing or correcting a cause of anomalous behavior.

    Using and Updating Topological Relationships Amongst a Set of Nodes in Event Clustering

    公开(公告)号:US20190317834A1

    公开(公告)日:2019-10-17

    申请号:US15950987

    申请日:2018-04-11

    Abstract: Using and updating topological relationships amongst a set of nodes in event clustering is disclosed. A current event occurs on a current node. A first cluster of related events includes a first event, occurring on a first node, that is time-correlated with the current event. The first cluster does not include any event that is topologically-correlated with the current event based on the existing set of topological relationships. A level of interdependence is determined between (a) occurrence of events on the current node and (b) occurrence of events on the first node. Based on the level of interdependence, the current event is added to the first cluster. Further, an event-based topological relationship between the first node and the second node is added to the set of topological relationships. Subsequently, clustering for new events may be determined based on the event-based topological relationship between the first node and the second node.

    SYSTEM FOR DETECTING AND CHARACTERIZING SEASONS

    公开(公告)号:US20170249376A1

    公开(公告)日:2017-08-31

    申请号:US15057065

    申请日:2016-02-29

    Abstract: Techniques are described for characterizing and summarizing seasonal patterns detected within a time series. According to an embodiment, a set of time series data is analyzed to identify a plurality of instances of a season, where each instance corresponds to a respective sub-period within the season. A first set of instances from the plurality of instances are associated with a particular class of seasonal pattern. After classifying the first set of instances, a second set of instances may remain unclassified or otherwise may not be associated with the particular class of seasonal pattern. Based on the first and second set of instances, a summary may be generated that identifies one or more stretches of time that are associated with the particular class of seasonal pattern. The one or more stretches of time may span at least one sub-period corresponding to at least one instance in the second set of instances.

Patent Agency Ranking