Abstract:
A fuel cell device includes: a reformer that generates a reformed gas; a fuel cell; a combustor that combusts off-gas of the reformed gas and air for power generation, and generates a combustion exhaust gas; a first air heat exchanger that has a combustion exhaust gas path and a first air supply path, and that performs heat exchange between the combustion exhaust gas and the air for power generation; a fuel cell storage which stores the fuel cell; a second air heat exchanger that has a second air supply path that supplies the air for power generation to the fuel cell, and that performs heat exchange between the off-gas of the air for power generation and the air for power generation; and a housing that stores members. The first air supply path and the second air supply path are disposed to cover whole members stored in the housing.
Abstract:
A high-temperature operating fuel cell system includes: a fuel cell stack that generates electric power through an electrochemical reaction of an oxidant gas and a reformed gas; a combustor that combusts a cathode off-gas and an anode off-gas; a reformer that generates the reformed gas from a raw material by utilizing heat of an exhaust gas generated by the combustor; a first preheater; a second preheater that preheats the oxidant gas through heat exchange with the exhaust gas and supplies the preheated oxidant gas to the cathode of the fuel cell stack; a casing that contains these components; and a first heat insulator that covers at least part of the casing, wherein the first preheater covers the first heat insulator and preheats the oxidant gas by heat transferred from the casing through the first heat insulator before the oxidant gas is supplied to the second preheater.
Abstract:
A heat exchanger, in which heat is exchanged between first and second mediums, includes a housing that includes a first inlet and a first outlet, an internal member that divides a space in the housing into first and second chambers, and first and second external channels, through which the first medium flows, in the respective first and second chambers. The internal member includes a diverging hole that divides the first medium into flows through the first and second external channels, a converging hole that allows the divided first medium to converge, a second inlet, a second outlet, and an internal channel through which the second medium flows. The first and second external channels each include a first bent portion bent inwardly at a peripheral portion of the first or second chamber. The internal channel includes a second bent portion bent inwardly at a peripheral portion of the internal member.
Abstract:
A high-temperature operating fuel-cell module includes a fuel-cell stack; a fuel-cell stack container in which the fuel-cell stack is contained and cathode off-gas discharged from the fuel-cell stack flows; a cathode off-gas collector that is provided in the fuel-cell stack container and in which the cathode off-gas is collected; an anode off-gas passage through which anode off-gas discharged from the fuel-cell stack flows; and a combustor that combusts the cathode off-gas collected in the cathode off-gas collector and the anode off-gas flowing through the anode off-gas passage, the combustor comprising: a combustion chamber in which the anode and cathode off-gas are mixed and combusted, an ejector that is connected to the anode off-gas passage and ejects the anode off-gas into the combustion chamber, and a diffusion plate that surrounds the ejector so that the ejector is located at the center of the diffusion plate, and ejects the cathode off-gas into the combustion chamber.
Abstract:
Disclosed is a high-temperature operating fuel cell system including: a fuel cell stack; a combustor that combusts a cathode off-gas and an anode off-gas; a heat insulator that covers at least part of the fuel cell stack and at least part of the combustor; a first preheater that covers at least part of the heat insulator and preheats an oxidant gas; an oxidant gas feeder that supplies the oxidant gas to the first preheater; a vacuum heat insulator that covers at least part of the first preheater; a sensor that detects information indicating stopping of a power generation operation; and a controller. When a determination is made that the power generation has stopped, the controller controls the oxidant gas feeder to supply the oxidant gas to the first preheater so that the temperature of the vacuum heat insulator is equal to or lower than a prescribed temperature.