Abstract:
Metamaterial systems capable of exhibiting changes in thermal conductivities in response to an external control or input, as well as methods relating thereto. The metamaterial systems include first and second plates, and a metamaterial core between and thermally coupled to the first and second plates. The metamaterial core comprises a plurality of elements coupled to and contacting each other, with each of the elements being a pseudo-tetrahedron having surfaces that define surface-to-surface contacts with at least one other of the elements. A force is applied to the metamaterial core that increases contact pressures between the elements at the surface-to-surface contacts thereof and thereby increases thermal contact conductivities at the surface-to-surface contacts and increases a thermal conductivity of the metamaterial core.
Abstract:
A cellular material barrier system for reducing sound transmission. The cellular material system includes a planar cellular metamaterial arrangement which includes at least one unit cell, the unit cell includes a sound normalizing arrangement, and a planar metamaterial arrangement coupled to the sound normalizing arrangement on a first side, the planar metamaterial arrangement includes a plate, and a frame affixed to the plate, the sound normalizing arrangement configured to normalize incident sound received at non-normal angle to thereby convey sound at normal angles to the planar metamaterial arrangement, the unit cell further comprising a back layer that is coupled to the sound normalizing arrangement on a second side, opposite the first side, the back layer is made from a porous material, including at least one of a fibrous layer, polymeric foams, ceramic foams, and metallic foams.
Abstract:
Metamaterial systems capable of exhibiting changes in thermal conductivities in response to an external control or input, as well as methods relating thereto. The metamaterial systems include first and second plates, and a metamaterial core between and thermally coupled to the first and second plates. The metamaterial core comprises a plurality of elements coupled to and contacting each other, with each of the elements being a pseudo-tetrahedron having surfaces that define surface-to-surface contacts with at least one other of the elements. A force is applied to the metamaterial core that increases contact pressures between the elements at the surface-to-surface contacts thereof and thereby increases thermal contact conductivities at the surface-to-surface contacts and increases a thermal conductivity of the metamaterial core.
Abstract:
A cellular material barrier system for reducing sound transmission. The cellular material system includes a planar cellular metamaterial arrangement which includes at least one unit cell, the unit cell includes a sound normalizing arrangement, and a planar metamaterial arrangement coupled to the sound normalizing arrangement on a first side, the planar metamaterial arrangement includes a plate, and a frame affixed to the plate, the sound normalizing arrangement configured to normalize incident sound received at non-normal angle to thereby convey sound at normal angles to the planar metamaterial arrangement, the unit cell further comprising a back layer that is coupled to the sound normalizing arrangement on a second side, opposite the first side, the back layer is made from a porous material, including at least one of a fibrous layer, polymeric foams, ceramic foams, and metallic foams.