Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided in connection with improving QoE in RAN congestion. In one example, a communications device is equipped to indicate a quality control indicator (QCI) for each of a plurality of applications that communicate with a RAN over a bearer, receive information regarding modification of the bearer or additional bearers based on the QCIs, and modify the bearer or additional bearers according to the information to achieve a desired QoE for at least one of the plurality of applications. In another example, a RAN is equipped to receive a QCI for each of a plurality of applications related to a bearer from a UE, and modify the bearer or adding additional bearers for communicating with the UE based on the QCI for each of the plurality of applications to improve QoE at the UE.
Abstract:
An optical-coax unit (OCU) includes an optical PHY to receive and transmit optical signals and a coax PHY to receive and transmit coax signals. The OCU also includes a media-independent interface to provide a first continuous bitstream from the optical PHY to the coax PHY and a second continuous bitstream from the coax PHY to the optical PHY. The first continuous bitstream corresponds to received optical signals and transmitted coax signals, and the second continuous bitstream corresponds to received coax signals and transmitted optical signals.
Abstract:
An optical-coax unit (OCU) includes an optical PHY to receive and transmit optical signals and a coax PHY to receive and transmit coax signals. The OCU also includes a media-independent interface to provide a first continuous bitstream from the optical PHY to the coax PHY and a second continuous bitstream from the coax PHY to the optical PHY. The first continuous bitstream corresponds to received optical signals and transmitted coax signals, and the second continuous bitstream corresponds to received coax signals and transmitted optical signals.
Abstract:
A physical-layer device includes a first sublayer to receive a first continuous bitstream from a media-independent interface and to provide a second continuous bitstream to the media-independent interface. The physical-layer device also includes a second sublayer to transmit first signals corresponding to the first continuous bitstream onto an external link during a first plurality of time windows and to receive second signals corresponding to the second continuous bitstream from the external link during a second plurality of time windows. The second plurality of time windows is distinct from the first plurality of time windows.
Abstract:
A physical-layer device includes a first sublayer to receive a first continuous bitstream from a media-independent interface and to provide a second continuous bitstream to the media-independent interface. The physical-layer device also includes a second sublayer to transmit first signals corresponding to the first continuous bitstream onto an external link during a first plurality of time windows and to receive second signals corresponding to the second continuous bitstream from the external link during a second plurality of time windows. The second plurality of time windows is distinct from the first plurality of time windows.
Abstract:
A physical-layer device includes a first sublayer to receive a first continuous bitstream from a media-independent interface and to provide a second continuous bitstream to the media-independent interface. The physical-layer device also includes a second sublayer to transmit first signals corresponding to the first continuous bitstream and to receive second signals corresponding to the second continuous bitstream. The second sublayer is to transmit the first signals and receive the second signals using time-division duplexing in a first mode of operation and using frequency-division duplexing in a second mode of operation.