Abstract:
Certain aspects relate to systems and techniques for flash collision detection, compensation, and prevention. For example, the flash of another camera or other sudden increases in ambient lighting of an image scene can introduce unwanted quality degradations into captured images, for example over-exposure of part or all of the captured image. Flash collision can be detected through a row sum calculation and comparison process in some examples. In some examples, flash collision can be compensated for by analysis of row sum data from a number of preview frames. In other examples, flash collision can be mitigated or prevented through use of a flash traffic control protocol.
Abstract:
Certain aspects relate to systems and techniques for color temperature analysis and matching. For example, three or more camera flash LEDs of different output colors can be used to match any of a range of ambient color temperatures in a non-linear space on the black body curve. The scene color temperature can be analyzed in a preliminary image by determining actual sensor R/G and B/G ratios, enabling more accurate matching of foreground flash lighting to background lighting by the reference illuminant for subsequent white balance processing. The current provided to, and therefore brightness emitted from, each LED can be individually controlled based on the determined sensor response to provide a dynamic and adaptive mix of the output colors of the LEDs.
Abstract:
Certain aspects relate to systems and techniques for color temperature analysis and matching. For example, three or more camera flash LEDs of different output colors can be used to match any of a range of ambient color temperatures in a non-linear space on the black body curve. The scene color temperature can be analyzed in a preliminary image by determining actual sensor R/G and B/G ratios, enabling more accurate matching of foreground flash lighting to background lighting by the reference illuminant for subsequent white balance processing. The current provided to, and therefore brightness emitted from, each LED can be individually controlled based on the determined sensor response to provide a dynamic and adaptive mix of the output colors of the LEDs.
Abstract:
Certain aspects relate to systems and techniques for flash collision detection, compensation, and prevention. For example, the flash of another camera or other sudden increases in ambient lighting of an image scene can introduce unwanted quality degradations into captured images, such as over-exposure of part or all of the captured image. Flash collision can be detected through a row sum calculation and comparison process in some examples. In some examples, flash collision can be compensated for by analysis of row sum data from a number of preview frames. In other examples, flash collision can be mitigated or prevented through use of a flash traffic controller.
Abstract:
Apparatus and methods for conditional display of a stereoscopic image pair on a display device are disclosed. In some aspects, a vertical disparity between two images is corrected. If the corrected vertical disparity is below a threshold, a three dimensional image may be generated based on the correction. In some cases, the corrected vertical disparity may still be significant, for example, above the threshold. In these instances, the disclosed apparatus and methods may display a two dimensional image.
Abstract:
Apparatus and methods for conditional display of a stereoscopic image pair on a display device are disclosed. In some aspects, a vertical disparity between two images is corrected. If the corrected vertical disparity is below a threshold, a three dimensional image may be generated based on the correction. In some cases, the corrected vertical disparity may still be significant, for example, above the threshold. In these instances, the disclosed apparatus and methods may display a two dimensional image.
Abstract:
Certain aspects relate to systems and techniques for flash collision detection, compensation, and prevention. For example, the flash of another camera or other sudden increases in ambient lighting of an image scene can introduce unwanted quality degradations into captured images, such as over-exposure of part or all of the captured image. Flash collision can be detected through a row sum calculation and comparison process in some examples. In some examples, flash collision can be compensated for by analysis of row sum data from a number of preview frames. In other examples, flash collision can be mitigated or prevented through use of a flash traffic controller.
Abstract:
Certain aspects relate to systems and techniques for flash collision detection, compensation, and prevention. For example, the flash of another camera or other sudden increases in ambient lighting of an image scene can introduce unwanted quality degradations into captured images, for example over-exposure of part or all of the captured image. Flash collision can be detected through a row sum calculation and comparison process in some examples. In some examples, flash collision can be compensated for by analysis of row sum data from a number of preview frames. In other examples, flash collision can be mitigated or prevented through use of a flash traffic control protocol.
Abstract:
A mobile device uses data from one or more sensors to determine a user context, such as a motion state of the user, and adjusts at least one camera feature selected form a group consisting of continuous auto-focus, auto-white balance, video encode quality, frame rate, search range used for focusing, and exposure mode based on the user context. The user context may include, e.g., at least one of panning, walking, standing, sitting, and traveling in a moving vehicle.