Abstract:
A conversion assembly for a dunnage conversion machine includes both a downstream pair of rotatable members and an upstream pair of rotatable members upstream of the downstream rotatable members. The downstream rotatable members include a pair of gears, and each gear has a plurality of teeth and is rotatable about a respective axis. The gears are positioned so that the teeth of one gear are sequentially interlaced with the teeth of the other gear as the gears rotate. The upstream rotatable members include a pair of feed wheels, and the gears and the feed wheels define a path for a sheet stock material from between the upstream pair of feed wheels to between the downstream pair of gears. The rate at which the sheet stock material is advanced by the feed wheels is the same as the rate at which the sheet stock material is advanced by the gears.
Abstract:
A conversion assembly for a dunnage conversion machine includes both a downstream pair of rotatable members and an upstream pair of rotatable members upstream of the downstream rotatable members. The downstream rotatable members include a pair of gears, and each gear has a plurality of teeth and is rotatable about a respective axis. The gears are positioned so that the teeth of one gear are sequentially interlaced with the teeth of the other gear as the gears rotate. The upstream rotatable members include a pair of feed wheels, and the gears and the feed wheels define a path for a sheet stock material from between the upstream pair of feed wheels to between the downstream pair of gears. The rate at which the sheet stock material is advanced by the feed wheels is the same as the rate at which the sheet stock material is advanced by the gears.
Abstract:
A conversion assembly for a dunnage conversion machine includes both a downstream pair of rotatable members and an upstream pair of rotatable members upstream of the downstream rotatable members. The downstream rotatable members include a pair of gears, and each gear has a plurality of teeth and is rotatable about a respective axis. The gears are positioned so that the teeth of one gear are sequentially interlaced with the teeth of the other gear as the gears rotate. The upstream rotatable members include a pair of feed wheels, and the gears and the feed wheels define a path for a sheet stock material from between the upstream pair of feed wheels to between the downstream pair of gears. The rate at which the sheet stock material is advanced by the feed wheels is the same as the rate at which the sheet stock material is advanced by the gears.
Abstract:
A conversion assembly for a dunnage conversion machine includes both a downstream pair of rotatable members and an upstream pair of rotatable members upstream of the downstream rotatable members. The downstream rotatable members include a pair of gears, and each gear has a plurality of teeth and is rotatable about a respective axis. The gears are positioned so that the teeth of one gear are sequentially interlaced with the teeth of the other gear as the gears rotate. The upstream rotatable members include a pair of feed wheels, and the gears and the feed wheels define a path for a sheet stock material from between the upstream pair of feed wheels to between the downstream pair of gears. The rate at which the sheet stock material is advanced by the feed wheels is the same as the rate at which the sheet stock material is advanced by the gears.
Abstract:
A conversion assembly for a dunnage conversion machine includes both a downstream pair of rotatable members and an upstream pair of rotatable members upstream of the downstream rotatable members. The downstream rotatable members include a pair of gears, and each gear has a plurality of teeth and is rotatable about a respective axis. The gears are positioned so that the teeth of one gear are sequentially interlaced with the teeth of the other gear as the gears rotate. The upstream rotatable members include a pair of feed wheels, and the gears and the feed wheels define a path for a sheet stock material from between the upstream pair of feed wheels to between the downstream pair of gears. The rate at which the sheet stock material is advanced by the feed wheels is the same as the rate at which the sheet stock material is advanced by the gears.
Abstract:
A jam-sensing method for a dunnage conversion machine includes the following steps: (a) converting a stock material into a relatively less dense dunnage material having characteristics that vary along the length of the dunnage material; (b) sensing the characteristics of the dunnage material; (c) generating a signal that varies as a function of the sensed characteristics; (d) monitoring the generated signal over time; and (e) generating a control signal when variation in the generated signal within a predetermined period is less than a predetermined amount, which would indicate a lack of movement of the material. This control signal can used to shut down the conversion process, thereby minimizing the extent of the jam condition.
Abstract:
A jam-sensing method for a dunnage conversion machine includes the following steps: (a) converting a stock material into a relatively less dense dunnage material having characteristics that vary along the length of the dunnage material; (b) sensing the characteristics of the dunnage material; (c) generating a signal that varies as a function of the sensed characteristics; (d) monitoring the generated signal over time; and (e) generating a control signal when variation in the generated signal within a predetermined period is less than a predetermined amount, which would indicate a lack of movement of the material. This control signal can used to shut down the conversion process, thereby minimizing the extent of the jam condition.
Abstract:
A conversion assembly for a dunnage conversion machine includes both a downstream pair of rotatable members and an upstream pair of rotatable members upstream of the downstream rotatable members. The downstream rotatable members include a pair of gears, and each gear has a plurality of teeth and is rotatable about a respective axis. The gears are positioned so that the teeth of one gear are sequentially interlaced with the teeth of the other gear as the gears rotate. The upstream rotatable members include a pair of feed wheels, and the gears and the feed wheels define a path for a sheet stock material from between the upstream pair of feed wheels to between the downstream pair of gears. The rate at which the sheet stock material is advanced by the feed wheels is the same as the rate at which the sheet stock material is advanced by the gears.
Abstract:
A packaging method includes the steps of (a) detecting whether a height (104) of contents (105) in a container (106) exceeds a predetermined height (112), and (b) indicating how much dunnage to dispense based on predetermined criteria, including whether a detected height exceeds a predetermined height that is less than a height of the container. The indicating step includes indicating a quantity of dunnage to dispense selected from a plurality of predetermined quantities of dunnage. If no detected height is greater than the predetermined height, the indicating step includes indicating that a regular amount of dunnage should be dispensed. And if a detected height is greater than the predetermined height, the indicating step includes indicating that either zero or less than the regular amount of dunnage should be dispensed. The detecting step also can include detecting whether any contents in the container have a height above the height of the container.
Abstract:
An improved packaging system (10) includes a packaging line that guides containers in a downstream direction, a sensor (12) that can identify a dimension of a container on the packaging line, a dunnage dispenser (14) on the packaging line downstream of the sensor to dispense dunnage to a void volume in a container, and a container closer (16) downstream of the dunnage dispenser (14) to close containers on the packaging line downstream of the dunnage dispenser. The container closer (16) includes an adjustable member (20), and is in communication with the sensor to (12) adjust the adjustable member (20) based on the identified dimension of the container. The system thus includes a way to identify the size of the container before the container reaches the container closer. The container closer can adjust for the container's size before the container arrives, speeding up the container closing operation.