Abstract:
Methods of acidizing a subterranean formation penetrated by a wellbore that include the steps of (a) injecting into the wellbore at a pressure below subterranean formation fracturing pressure a treatment fluid having a first viscosity and including an aqueous acid and a gelling agent selected from the group consisting of Formulas I-XI and combinations thereof; (b) forming at least one void in the subterranean formation with the treatment fluid; and (c) allowing the treatment fluid to attain a second viscosity that is greater than the first viscosity.
Abstract:
Methods of acidizing a subterranean formation penetrated by a wellbore that include the steps of (a) injecting into the wellbore at a pressure below subterranean formation fracturing pressure a treatment fluid having a first viscosity and including an aqueous acid and a gelling agent selected from the group consisting of Formulas I-XI and combinations thereof; (b) forming at least one void in the subterranean formation with the treatment fluid; and (c) allowing the treatment fluid to attain a second viscosity that is greater than the first viscosity.
Abstract:
A process for preparing an aromatic compound or compounds where at least one mandelic group —CHOH—COOH is described, comprising a reaction for condensation of at least one aromatic compound with glyoxylic acid or derivatives thereof, wherein said condensation reaction is carried out substantially in the absence of any acid or any base added to the reaction medium. The condensation reaction is followed by an oxidation reaction in order to obtain aromatic aldehyde.
Abstract:
Process (P) for the decarboxylative ketonization of fatty acids, fatty acid derivatives or mixtures thereof in the liquid phase with metal compounds as catalyst wherein the fatty acids, fatty acid derivatives or mixtures thereof are added sequentially. Downstream chemistry can be realized starting from internal ketones obtained by process (P), especially in order to design and develop new surfactants.
Abstract:
The present invention pertains to a process for the cross-ketonization (Piria reaction) between an aryl carboxylic acid and an aliphatic carboxylic acid using a metal-based compound and a slight or a moderate excess of aryl carboxylic acid. A good selectivity, up to 99 mol %, can be achieved. The aryl aliphatic ketone can be used for the preparation of surfactants and other downstream products.
Abstract:
The present invention is directed to N-alkyldiamide compounds responding to the following formula (I), wherein: R1 or R2 is selected from hydrogen or a linear, branched or cyclic, saturated or unsaturated, hydrocarbon chain having from 1 to 40 carbon atoms, with the proviso that one and only one of R1 or R2 is hydrogen, R is selected from cyclic or branched, saturated or unsaturated, hydrocarbon aliphatic chain having from 2 to 15 carbon atoms. The present invention also relates to the use of the com pounds of formula (I) as a gelling agent and to gel compositions comprising said compounds of formula (I).
Abstract:
Method (M) for the preparation of an end compound from an internal ketone, said method comprising: —synthesizing the internal ketone by a process (P) for the decarboxylative ketonization of a fatty acid, a fatty acid derivative or a mixture thereof in a liquid phase with a metal compound as catalyst in the substantial absence of added solvent, wherein the fatty acid, fatty acid derivative or mixture thereof is added in sequential steps, the first step taking place at a temperature sequentially at a temperature from 100° C. to 270° C., —causing the internal ketone to react in accordance with a single or multiple chemical reaction scheme involving at least one reagent other than the internal ketone, wherein at least one product of the chemical reaction scheme is the end compound that is not further caused to be chemically converted into another compound.
Abstract:
A process for the decarboxylative ketonizationof fatty acids, fatty acid derivatives or mixtures thereof in the liquid phase with metal compounds as catalyst wherein the fatty acids, fatty acid derivatives or mixtures thereof are added sequentially.
Abstract:
The present invention is directed to a process for synthesizing an internal ketone K1 by decarboxylative ketonization reaction of a fatty acid, a fatty acid derivative or a mixture thereof in a liquid phase with a metal compound as catalyst in a reaction medium, said process being characterized in that a ketone K2 at liquid state, which is identical or similar to the ketone K1, is introduced into the reaction medium. The so-synthesized internal ketone K1 can be used for the preparation of a variety of end compounds, including surfactants having a twin-tail structure or a Gemini structure.