Abstract:
The present invention provides a resonant wireless power transmitter circuit, including: a load circuit, a power conversion circuit which is coupled between an input power supply and the load circuit, and a phase detection and control circuit. The power conversion circuit includes plural power switches and a current sensing device. The plural power switches operate with an operating frequency to convert the input power supply to an output power for driving the load circuit, wherein the load circuit has a load current. The load current has a load current phase difference from the switching frequency. The phase detection and control circuit detects a voltage difference between the current inflow terminal and the current outflow terminal of the current sensing device within a dead time in which the plural power switches are not conductive. The voltage difference corresponds to the load current phase difference.
Abstract:
The present invention provides a resonant wireless power receiver circuit, including: a resonant circuit for receiving a wireless power to generate an AC resonant signal; a switch controlled rectifier circuit which includes a multi-mode switch circuit, for rectifying the AC resonant signal into a rectifier output signal to drive a load, wherein the multi-mode switch circuit includes at least one multi-mode switch; and a feedback control circuit for generating a switch control signal according to a feedback signal related to the rectifier output signal to control the at least one multi-mode switch such that it operates at least in a Resonance Short Circuit Operation to limit the rectifier output signal or to regulate the rectifier output signal. In the Resonance Short Circuit Operation, a positive resonant output node and a negative resonant output node are short-circuited by the multi-mode switch circuit.
Abstract:
The present invention discloses a resonant wireless power transmitter circuit, which has an input impedance. The resonant wireless power transmitter circuit includes: a driver circuit coupled with a power supply, which includes at least a power switch; a switching resonant control circuit coupled with the driver circuit, such that the driver operates at a pre-determined or a variable resonant frequency; an adjustable impedance matching circuit coupled with the driver circuit, which includes at least a varactor; a transmitter circuit coupled with the impedance matching circuit and the driver circuit, which includes at least a transmitter coil; and an impedance control circuit coupled with the adjustable impedance matching circuit and the driver circuit, which provides an impedance control signal to control the reactance of the varactor, such that the input impedance of the resonant wireless power transmitter circuit is matched at the pre-determined or the variable resonant frequency.
Abstract:
The present invention discloses a resonant wireless power transmitter circuit, which has an input impedance. The resonant wireless power transmitter circuit includes: a driver circuit coupled with a power supply, which includes at least a power switch; a switching resonant control circuit coupled with the driver circuit, such that the driver operates at a pre-determined or a variable resonant frequency; an adjustable impedance matching circuit coupled with the driver circuit, which includes at least a varactor; a transmitter circuit coupled with the impedance matching circuit and the driver circuit, which includes at least a transmitter coil; and an impedance control circuit coupled with the adjustable impedance matching circuit and the driver circuit, which provides an impedance control signal to control the reactance of the varactor, such that the input impedance of the resonant wireless power transmitter circuit is matched at the pre-determined or the variable resonant frequency.
Abstract:
The present invention provides a resonant wireless power receiver circuit, including: a resonant circuit for receiving a wireless power to generate an AC resonant signal; a switch controlled rectifier circuit which includes a multi-mode switch circuit, for rectifying the AC resonant signal into a rectifier output signal to drive a load, wherein the multi-mode switch circuit includes at least one multi-mode switch; and a feedback control circuit for generating a switch control signal according to a feedback signal related to the rectifier output signal to control the at least one multi-mode switch such that it operates at least in a Resonance Short Circuit Operation to limit the rectifier output signal or to regulate the rectifier output signal. In the Resonance Short Circuit Operation, a positive resonant output node and a negative resonant output node are short-circuited by the multi-mode switch circuit.
Abstract:
A tunable DC voltage generating circuit includes: a resonance circuit including an inductor and an input capacitor coupled in a series connection, and arranged to operably receive an input signal and to operably generate a resonance signal at an output node between the inductor and the input capacitor; a rectifying circuit arranged to operably rectify the resonance signal; a current control unit, coupled with an output of the rectifying circuit, and coupled with the inductor or the input capacitor in a parallel connection; a stabilizing capacitor, coupled with the output of the rectifying circuit, arranged to operably provide a DC output signal having a voltage level greater than that of the input signal; and a control circuit arranged to operably adjust a current passing through the current control unit according to a setting signal to thereby manipulate the DC output signal.
Abstract:
A resonant wireless power receiver circuit includes an adjustable impedance matching circuit and a receiver circuit, the impedance matching circuit and the receiver circuit in combination receive a wireless power and generate a resonant output. A rectifier is coupled to the combination of the adjustable impedance matching circuit and the receiver circuit to rectify the resonant output to generate a rectified output. The impedance of the adjustable impedance matching circuit is controlled by a feedback control circuit such that the load impedance of rectified output is regulated at a pre-determined impedance value, or the voltage of the rectified output is regulated at a pre-determined voltage value.
Abstract:
A tunable DC voltage generating circuit includes: a resonance circuit including an inductor and an input capacitor coupled in a series connection, and arranged to operably receive an input signal and to operably generate a resonance signal at an output node between the inductor and the input capacitor; a rectifying circuit coupled with the output node and arranged to operably rectify the resonance signal; a current control unit coupled with an input of the rectifying circuit and coupled with the inductor or the input capacitor in a parallel connection; a stabilizing capacitor coupled with an output of the rectifying circuit and arranged to operably provide a DC output signal having a voltage level greater than that of the input signal; and a control circuit arranged to operably adjust a current passing through the current control unit according to a setting signal to thereby manipulate the DC output signal.
Abstract:
The present invention provides a resonant wireless power receiver circuit, comprising: a resonant circuit for receiving a wireless power to generate a AC resonant signal which has an amplitude; a bridge rectifier circuit which includes a multi-mode switch, for rectifying the AC resonant signal to a rectifier output signal to drive a load, wherein the rectifier output signal includes a rectifier output voltage and a rectifier output current; and a feedback control circuit for generating a switch control signal according to a feedback signal related to the rectifier output signal to control the multi-mode switch to operate in a Conductive Operation at least for a partial time in a cycle period, such that the rectifier output voltage is substantially twice the amplitude, or the rectifier output voltage corresponds to an output voltage reference and/or the rectifier output voltage corresponds to an output current reference.
Abstract:
The present invention discloses a resonant wireless power transmitter circuit, which has an input impedance. The resonant wireless power transmitter circuit includes: a driver circuit coupled with a power supply, which includes at least a power switch; a switching resonant control circuit coupled with the driver circuit, such that the driver operates at a pre-determined or a variable resonant frequency; an adjustable impedance matching circuit coupled with the driver circuit, which includes at least a varactor; a transmitter circuit coupled with the impedance matching circuit and the driver circuit, which includes at least a transmitter coil; and an impedance control circuit coupled with the adjustable impedance matching circuit and the driver circuit, which provides an impedance control signal to control the reactance of the varactor, such that the input impedance of the resonant wireless power transmitter circuit is matched at the pre-determined or the variable resonant frequency.