Abstract:
A magnetic flowmeter for measuring flow of a process fluid in a pipe includes a magnetic coil disposed adjacent to the pipe configured to apply a magnetic field to the process fluid. First and second electrodes are disposed within the pipe and electrically coupled to the process fluid and configured to sense an electromotive force (EMF) induced in the process fluid due to the applied magnetic field and flow of the process fluid. Input circuitry is coupled to the first and second electrodes and provides an output related to the sensed EMF. Diagnostic circuitry coupled to the input circuitry is configured to identify a saturation related condition and responsively provide a diagnostic output. In another embodiment, saturation prevention circuitry prevents saturation of the input circuitry.
Abstract:
A magnetic flowmeter comprises a pipe section for process flow, a coil for generating a magnetic field across the pipe section, a current source for energizing the coil to generate the magnetic field at a coil drive frequency, and electrodes for sensing voltage induced across the process flow by the magnetic field. A processor calculates a function of the sensed voltage and generates a flow output based on the function. The processor adjusts an operating parameter of the flowmeter, such as electrode voltage sampling period, the coil drive frequency, or a phase shift, as a function of a sensed electrode-to-electrode or electrode-to-ground complex impedance.
Abstract:
A magnetic flowmeter includes circuitry for sensing coil current, coil voltage, or coil resistance. Based on the sensed coil current, voltage, or resistance, a digital processor determines whether a power limit or a coil current limit is exceeded and either halts operation until it receives a new configuration with a new coil current setpoint, or determines a new coil current setpoint itself and adjusts the magnetic flowmeter to that new coil current setpoint.
Abstract:
A magnetic flowmeter includes circuitry for sensing coil current, coil voltage, or coil resistance. Based on the sensed coil current, voltage, or resistance, a digital processor determines whether a power limit or a coil current limit is exceeded and either halts operation until it receives a new configuration with a new coil current setpoint, or determines a new coil current setpoint itself and adjusts the magnetic flowmeter to that new coil current setpoint.
Abstract:
A magnetic flowmeter comprises a pipe section for process flow, a coil for generating a magnetic field across the pipe section, a current source for energizing the coil to generate the magnetic field at a coil drive frequency, and electrodes for sensing voltage induced across the process flow by the magnetic field. A processor calculates a function of the sensed voltage and generates a flow output based on the function. The processor adjusts an operating parameter of the flowmeter, such as electrode voltage sampling period, the coil drive frequency, or a phase shift, as a function of a sensed electrode-to-electrode or electrode-to-ground complex impedance.
Abstract:
A magnetic flowmeter includes a flowtube arranged to receive a flow of process fluid. A coil is positioned proximate the flowtube and arranged to apply a magnetic field to the process fluid in response to a drive current alternating direction. First and second electrodes are arranged to sense a voltage potential in the process fluid in response to the applied magnetic field. The voltage potential is indicative of flow rate of process fluid through the flowtube. A sensor is coupled to the first and second current paths which has a sensor output related to the drive current. Diagnostic circuitry provides a diagnostic output as a function of a transient change in the sensor output when current flowing through the coil alternates direction.
Abstract:
A magnetic flowmeter includes a flowtube with electrodes and field coil and a transmitter that automatically determines an operating setpoint for the magnetic flowmeter based upon sensed coil inductance, sensed coil resistance, a power rating for the transmitter, the flowtube, or both, and selected performance criteria.
Abstract:
A magnetic flowmeter includes a flowtube arranged to receive a flow of process fluid. A coil is positioned proximate the flowtube and arranged to apply a magnetic field to the process fluid in response to a drive current alternating direction. First and second electrodes are arranged to sense a voltage potential in the process fluid in response to the applied magnetic field. The voltage potential is indicative of flow rate of process fluid through the flowtube. A sensor is coupled to the first and second current paths which has a sensor output related to the drive current. Diagnostic circuitry provides a diagnostic output as a function of a transient change in the sensor output when current flowing through the coil alternates direction.
Abstract:
A magnetic flowmeter for measuring flow of a process fluid in a pipe includes a magnetic coil disposed adjacent to the pipe configured to apply a magnetic field to the process fluid. First and second electrodes are disposed within the pipe and electrically coupled to the process fluid and configured to sense an electromotive force (EMF) induced in the process fluid due to the applied magnetic field and flow of the process fluid. Input circuitry is coupled to the first and second electrodes and provides an output related to the sensed EMF. Diagnostic circuitry coupled to the input circuitry is configured to identify a saturation related condition and responsively provide a diagnostic output. In another embodiment, saturation prevention circuitry prevents saturation of the input circuitry.