摘要:
In sophisticated semiconductor devices, a strain-inducing semiconductor alloy may be positioned close to the channel region by forming cavities on the basis of a wet chemical etch process, which may have an anisotropic etch behavior with respect to different crystallographic orientations. In one embodiment, TMAH may be used which exhibits, in addition to the anisotropic etch behavior, a high etch selectivity with respect to silicon dioxide, thereby enabling extremely thin etch stop layers which additionally provide the possibility of further reducing the offset from the channel region while not unduly contributing to overall process variability.
摘要:
In sophisticated semiconductor devices, a strain-inducing semiconductor alloy may be positioned close to the channel region by forming cavities on the basis of a wet chemical etch process, which may have an anisotropic etch behavior with respect to different crystallographic orientations. In one embodiment, TMAH may be used which exhibits, in addition to the anisotropic etch behavior, a high etch selectivity with respect to silicon dioxide, thereby enabling extremely thin etch stop layers which additionally provide the possibility of further reducing the offset from the channel region while not unduly contributing to overall process variability.
摘要:
In sophisticated semiconductor devices, a strain-inducing semiconductor alloy may be positioned close to the channel region by forming cavities on the basis of a wet chemical etch process, which may have an anisotropic etch behavior with respect to different crystallographic orientations. In one embodiment, TMAH may be used which exhibits, in addition to the anisotropic etch behavior, a high etch selectivity with respect to silicon dioxide, thereby enabling extremely thin etch stop layers which additionally provide the possibility of further reducing the offset from the channel region while not unduly contributing to overall process variability.
摘要:
In sophisticated semiconductor devices, a strain-inducing semiconductor alloy may be positioned close to the channel region by forming cavities on the basis of a wet chemical etch process, which may have an anisotropic etch behavior with respect to different crystallographic orientations. In one embodiment, TMAH may be used which exhibits, in addition to the anisotropic etch behavior, a high etch selectivity with respect to silicon dioxide, thereby enabling extremely thin etch stop layers which additionally provide the possibility of further reducing the offset from the channel region while not unduly contributing to overall process variability.
摘要:
In sophisticated semiconductor devices, an asymmetric transistor configuration may be obtained on the basis of an asymmetric well implantation while avoiding a tilted implantation process. For this purpose, a graded implantation mask may be formed, such as a graded resist mask, which may have a higher ion blocking capability at the drain side compared to the source side of the asymmetric transistor. For instance, the asymmetric configuration may be obtained on the basis of a non-tilted implantation process with a high degree of performance gain and may be accomplished irrespective of the technology standard under consideration.
摘要:
The drain and source regions of a multiple gate transistor may be formed without an epitaxial growth process by using a placeholder structure for forming the drain and source dopant profiles and subsequently masking the drain and source areas and removing the placeholder structures so as to expose the channel area of the transistor. Thereafter, corresponding fins may be patterned and a gate electrode structure may be formed. Consequently, reduced cycle times may be accomplished due to the avoidance of the epitaxial growth process.
摘要:
In sophisticated semiconductor devices, an asymmetric transistor configuration may be obtained on the basis of an asymmetric well implantation while avoiding a tilted implantation process. For this purpose, a graded implantation mask may be formed, such as a graded resist mask, which may have a higher ion blocking capability at the drain side compared to the source side of the asymmetric transistor. For instance, the asymmetric configuration may be obtained on the basis of a non-tilted implantation process with a high degree of performance gain and may be accomplished irrespective of the technology standard under consideration.
摘要:
The drain and source regions of a multiple gate transistor may be formed without an epitaxial growth process by using a placeholder structure for forming the drain and source dopant profiles and subsequently masking the drain and source areas and removing the placeholder structures so as to expose the channel area of the transistor. Thereafter, corresponding fins may be patterned and a gate electrode structure may be formed. Consequently, reduced cycle times may be accomplished due to the avoidance of the epitaxial growth process.
摘要:
Transistor characteristics may be adjusted on the basis of asymmetrically formed cavities in the drain and source areas so as to maintain a strain-inducing mechanism while at the same time providing the possibility of obtaining asymmetric configuration of the drain and source areas while avoiding highly complex implantation processes. For this purpose, the removal rate during a corresponding cavity etch process may be asymmetrically modified on the basis of a tilted ion implantation process.
摘要:
Transistor characteristics may be adjusted on the basis of asymmetrically formed cavities in the drain and source areas so as to maintain a strain-inducing mechanism while at the same time providing the possibility of obtaining asymmetric configuration of the drain and source areas while avoiding highly complex implantation processes. For this purpose, the removal rate during a corresponding cavity etch process may be asymmetrically modified on the basis of a tilted ion implantation process.