Abstract:
A system and method is provided for analyzing a glucose state. A method may include identifying a target glucose state and an initial glucose state. The method may include calculating a target return path for a transition from the initial glucose state to the target glucose state. The target return path may comprise at least one intermediate glucose state associated with the transition from the initial glucose state to the target glucose state. The target return path may be calculated based on a hazard associated with the at least one intermediate glucose state of the target return path.
Abstract:
A system and method for considering the effects of aerobic exercise on blood glucose levels for individuals is described. In at least one embodiment of the system of the present disclosure, the system comprises a computing device for generating a prediction of future blood glucose levels for the individual at least partly based on an exercise model, wherein the exercise model is based on parameters that are independent of intensity of the aerobic exercise, and a means for taking an action at least based on the prediction from the exercise model.
Abstract:
Methods and devices for retrospectively assessing continuous monitoring reference pattern data to determine a risk of a patient glucose level measurement taken in at least one data segment being outside a predetermined range. The methods and devices can include executing an algorithm to compare risk scores derived from reference pattern data in a currently collected data segment with risk scores of previously stored reference pattern data of previously collected data segments for a patient for assessing risk.
Abstract:
Systems and methods for automatically displaying patterns in biological data may include one or more processors, and machine readable instructions. The machine readable instructions can cause the one or more processors to divide biological data into segments of interest. The one or more processers can transform, automatically, each of the segments of interest into a set of features according to a mathematical algorithm. Further, the one or more processers can cluster, automatically, the segments of interest into groups of clustered segments according to a clustering algorithm. The segments of interest can be grouped in the groups of clustered segments based at least in part upon the set of features. A cluster center can be associated with one of the groups of clustered segments. Moreover, the one or more processers can present, automatically, the cluster center on a human machine interface.
Abstract:
The present disclosure relates to a system and method for determining a basal rate adjustment based on risk associated with a glucose state of a person with diabetes. A method may include detecting a glucose state of the person based on a received glucose measurement signal and determining a current risk metric associated with the detected glucose state. The method may include identifying a reference glucose state and a reference risk metric associated with the reference glucose state, and calculating an adjustment to a basal rate of a therapy delivery device based on the current risk metric associated with the detected glucose state and the reference risk metric associated with the reference glucose level.
Abstract:
Methods and devices for retrospectively assessing continuous monitoring reference pattern data to determine a risk of a patient glucose level measurement taken in at least one data segment being outside a predetermined range. The methods and devices can include executing an algorithm to compare risk scores derived from reference pattern data in a currently collected data segment with risk scores of previously stored reference pattern data of previously collected data segments for a patient for assessing risk.
Abstract:
The present disclosure relates to a system and method for determining a basal rate adjustment based on risk associated with a glucose state of a person with diabetes. A method may include detecting a glucose state of the person based on a received glucose measurement signal and determining a current risk metric associated with the detected glucose state. The method may include identifying a reference glucose state and a reference risk metric associated with the reference glucose state, and calculating an adjustment to a basal rate of a therapy delivery device based on the current risk metric associated with the detected glucose state and the reference risk metric associated with the reference glucose level.
Abstract:
A system and method is provided for analyzing a glucose state. A method may include identifying a target glucose state and an initial glucose state. The method may include calculating a target return path for a transition from the initial glucose state to the target glucose state. The target return path may comprise at least one intermediate glucose state associated with the transition from the initial glucose state to the target glucose state. The target return path may be calculated based on a hazard associated with the at least one intermediate glucose state of the target return path.