Abstract:
The invention relates to a method for building a 3D model of an area of interest on the surface of a planet. The method comprises providing a plurality of 2D images from satellites, where each 2D image out of the plurality of 2D images at least partly covers the area of interest. Also, each subarea of the area of interest is covered by at least two images, taken from different angles, out of the plurality of 2D images. Bundle adjustments are performed for the plurality of 2D images and the area of interest is divided into parts. For each part of the area of interest at least one combination and preferably all possible combinations out of two images covering that part of the area of interest are taken. Said two images are taken from the at least two images, taken from at least two different angles, out of the plurality of 2D images. Further, for each part of the area, point matching correspondence is established for a set of points for each such combination of two images. The sets of points are combined if more than one set of points exists. Even further, for each part of the area, a 3D model of said part of the area of interest is built based on the combined set of points. The 3D models from each part of the area of interest are combined to a 3D model of the whole area of interest. The invention also relates to a system, a computer program and a computer program product.
Abstract:
Various embodiments provide a method for analyzing images generated from at least one imaging system on at least one satellite. The method comprises providing at least three images of an area of interest from the at least one imaging system, the provided images being provided from at least three different angles, establishing point correspondence between the provided images, generating at least two sets of three-dimensional information based on the provided images, wherein the at least two sets of three-dimensional information are generated based on at least two different combinations of at least two of the at least three provided images of the area of interest, and comparing the at least two sets of three-dimensional information so as to determine discrepancies and providing information related to the imaging system and/or errors in the images based on the determined discrepancies. Associated systems, computer programs, and computer program products are also provided.
Abstract:
The invention relates to a method for identifying a difference between a first 3D model of an environment and a second 3D model of the environment. The first and second 3D model each comprise a plurality of points or parts, wherein each point or part of the first and second model comprises geometrical information and texture information. Corresponding points or parts of the first and second 3D model are matched based on the geometrical information and/or the texture information. The matched points or parts of the first and second model are compared to determine at least one difference value based on the geometrical information and the texture information of the first and second model. A difference between the first and second model is identified if the at least one difference value exceeds a predetermined value. The invention also relates to an arrangement, a computer program, and a computer program product.
Abstract:
The present invention relates to a method for estimating values for a set of parameters of an imaging system 1. The method comprises taking at least two pictures with the imaging system (1), where the at least two pictures are taken from different positions and where the at least two pictures comprise an at least partially overlapping area. It also comprises sending out pulses to the at least partially overlapping area, and detecting the reflected pulses and calculating distances between a sender of the pulses and the respective point where the pulses were reflected based on the travel time of the pulses. Further, the method comprises associating positioning data to the pictures and to the calculated distance between the points where the pulses were reflected and the sender of the pulses. Said positioning data comprises a position and pointing direction of the imagining system 1 and the sender of the pulses. The method comprises calculating first information about the area, based on the at least two pictures, the information comprising at least one quantity of the area, the at least one quantity comprising size and/or position, and calculating second information related to the calculated distances to the at least partly overlapping area, the second information comprising at least one quantity of the area, the at least one quantity comprising size and/or position. The method also comprises comparing values for the quantities contained in the first and second information, and, if the value for at least one quantity of the area obtained from the first information differs from the value for the corresponding at least one quantity of the area obtained from the second information, calculating values and/or an error estimate for the set of parameters of the imaging system 1 based on the difference.