-
公开(公告)号:US10714807B2
公开(公告)日:2020-07-14
申请号:US16461838
申请日:2017-09-06
Applicant: SAAB AB
Inventor: Martin Blennius
Abstract: A stabilization arrangement (10) for stabilizing an antenna mast (3), comprising an antenna mast (3) and a gyroscopic stabilizer device (12), wherein the gyroscopic stabilizer device (12) in turn comprises a flywheel (11), a flywheel axis (14), wherein the flywheel (11) is arranged about the flywheel axis (14), and a gimbal structure (13), wherein the flywheel (11) is suspended in the gimbal structure (13) and the gimbal structure (13) is configured to permit flywheel precession or tilting about at least one gimbal output axis (16). The gyroscopic stabilizer device (12) is fixedly arranged in connection to a first end portion (31) of the antenna mast (3) and the antenna mast (3) is fastenable to a supporting structure at a second end portion (32) of the antenna mast (3), wherein the gyroscopic stabilizer device (12) is configured to reduce movements in a plane perpendicular to the extension of the antenna mast (3).
-
公开(公告)号:US10955199B2
公开(公告)日:2021-03-23
申请号:US16305740
申请日:2016-05-30
Applicant: SAAB AB
Inventor: Martin Blennius , Hans Falk
Abstract: A cooling device for providing cooling capability of adjacent structures comprises a hollow chamber, an inlet and a chamber outlet, wherein the inlet, the chamber and the chamber outlet are configured such that fluid flow may enter via the inlet, pass through the chamber, and exit via the chamber outlet. The chamber is divided into a distribution chamber and a cooling chamber by a partitioning member, wherein the inlet is fluidly connected to the distribution chamber and the chamber outlet is fluidly connected to the cooling chamber. The partitioning member comprises at least a first and a second constriction passage, wherein the first constriction passage has a first predefined cross sectional flow area and the second constriction passage has a second predefined cross sectional flow area. The sizes of the predefined at least first and second cross sectional flow areas of the at least first and second constriction passages are controllable, whereby the distribution of fluid flow from the distribution chamber to the cooling chamber via the respective constriction passage is controllable.
-