Abstract:
A method for purifying a crude acetone raw material containing low molecular weight impurities using two columns is disclosed. The method comprises the steps of feeding the crude acetone raw material into a first column; adding an alkaline reagent and an oxidative agent into the first column to form high molecular weight impurities; removing a top fraction from the first column by distillation to form bottom fraction comprising an acetone mixture comprising high molecular weight impurities; feeding the bottom fraction comprising the acetone mixture obtained to a second rectification column at a charge point on the column; adding an alkaline reagent to the second column above the charge point of the bottom fraction fed; and separating a purified acetone from the high molecular weight impurities and removing the purified acetone as a top fraction by distillation in the second column, wherein the second rectification column is operated at atmospheric pressure.
Abstract:
A method for purifying a crude acetone raw material containing low molecular weight impurities using two columns is disclosed. Crude acetone raw material is fed into a first column; adding an alkaline reagent and an oxidative agent into the first column to form high molecular weight impurities; removing a top fraction from the first column by distillation to form bottom fraction containing an acetone mixture containing high molecular weight impurities; feeding the bottom fraction containing the acetone mixture obtained to a second rectification column at a charge point on the column; adding an alkaline reagent to the second column above the charge point of the bottom fraction fed; and separating a purified acetone from the high molecular weight impurities and removing the purified acetone as a top fraction by distillation in the second column, wherein the second rectification column is operated at atmospheric pressure.
Abstract:
An apparatus and method for detecting a liquid level in an electrolytic cell are disclosed herein, the apparatus comprising a level tube in fluid contact with the electrolytic cell; a proximity sensor positioned to detect the presence or absence of liquid at a predetermined level in the level tube; and a control system responsive to the proximity sensor, wherein the control system is in communication with the liquid level sensor via a communication system. The proximity sensor detects the presence or absence of fluid in the level tube and sends a signal to the control system via the communication system; and the control system provides an indication of liquid level.