Abstract:
An optical waveguide includes a textured light-diffracting layer. The optical waveguide is made from a poly(aliphatic ester)-polycarbonate copolymer having very high flow properties and good impact properties. A method of manufacturing the waveguide by injection molding, a method of incorporating a microprism structure and a method of scattering light by directing light through a light-scattering layer thereby produced on the waveguide are also disclosed.
Abstract:
Disclosed is a process for the manufacture of a modified polyalkylene terephthalate such as modified polybutylene terephthalate. In particular, the process comprises employing a titanium-containing catalyst formed by the reaction product of tetraalkyl titanate and a complexing agent comprising a phosphorous, nitrogen or boron atom. The process is used to prepare modified polyalkylene terephthalates characterized by improved hydrostability, as well as compositions derived therefrom.
Abstract:
Disclosed is a process for the manufacture of a polyalkylene terephthalate such as polybutylene terephthalate. In particular, the process comprises employing a titanium-containing catalyst formed by the reaction product of tetraalkyl titanate and a complexing agent comprising a phosphorous, nitrogen or boron atom. The process is used to prepare polyalkylene terephthalates characterized by improved hydrostability, as well as compositions derived therefrom.
Abstract:
Disclosed herein are compositions including a cross-linked polycarbonate. The cross-linked polycarbonate may be derived from a polycarbonate having about 0.5 mol % to about 5 mol % endcap groups derived from a monohydroxybenzophenone. A plaque including the composition can achieve a UL94 5VA rating. Also disclosed herein are articles including the compositions, methods of using the compositions, and processes for preparing the compositions.
Abstract:
Photoactive additives are disclosed. The additive is formed from the reaction of a dihydroxybenzophenone, one or more linker moieties having functional groups that react with the phenolic groups, a diol chain extender, and an end-capping agent. If desired, a secondary linker moiety can be used. When added to a base polymeric resin, the photoactive additive permits crosslinking when exposed to ultraviolet light.
Abstract:
Disclosed herein are compositions including a polycarbonate-siloxane copolymer and a silicone-based graft copolymer. The compositions may include one or more additional polymers, such as a bisphenol-A polycarbonate. The compositions may include additional components, such as anti-drip agents, and/or flame retardant salt additives. Also disclosed herein are articles including the compositions, methods of using the compositions, and processes for preparing the compositions.
Abstract:
Photoactive additives are disclosed. Such additives are polymers or oligomers that contain UV-active groups (such as ketone groups) and contain polysiloxane blocks as well. When added to a base polymeric resin and used in molding, this structure promotes migration of the additive to the surface. Crosslinking occurs upon exposure to ultraviolet light.
Abstract:
Processes for increasing the chemical resistance of a surface of a formed article are disclosed. The formed article is produced from a polymeric composition comprising a photoactive additive containing photoactive groups derived from a monofunctional benzophenone. The surface of the formed article is then exposed to ultraviolet light to cause crosslinking of the photoactive additive and produce a crosslinked surface. The crosslinking enhances the chemical resistance of the surface. Various means for controlling the depth of the crosslinking are also discussed.
Abstract:
A method for purifying a crude acetone raw material containing low molecular weight impurities using two columns is disclosed. Crude acetone raw material is fed into a first column; adding an alkaline reagent and an oxidative agent into the first column to form high molecular weight impurities; removing a top fraction from the first column by distillation to form bottom fraction containing an acetone mixture containing high molecular weight impurities; feeding the bottom fraction containing the acetone mixture obtained to a second rectification column at a charge point on the column; adding an alkaline reagent to the second column above the charge point of the bottom fraction fed; and separating a purified acetone from the high molecular weight impurities and removing the purified acetone as a top fraction by distillation in the second column, wherein the second rectification column is operated at atmospheric pressure.