Abstract:
A novel organometallic complex with high reliability is provided. A light-emitting element includes an EL layer between a pair of electrodes. The EL layer includes at least a light-emitting layer. The light-emitting layer contains an organometallic complex. The organometallic complex includes a first ligand and a second ligand which are coordinated to a central metal. The HOMO is distributed over the first ligand, and the LUMO is distributed over the second ligand. The first ligand and the second ligand are cyclometalated ligands.
Abstract:
A novel organometallic complex with high reliability is provided. A light-emitting element includes an EL layer between a pair of electrodes. The EL layer includes at least a light-emitting layer. The light-emitting layer contains an organometallic complex. The organometallic complex includes a first ligand and a second ligand which are coordinated to a central metal. The HOMO is distributed over the first ligand, and the LUMO is distributed over the second ligand. The first ligand and the second ligand are cyclometalated ligands.
Abstract:
A novel organic compound that can be used as an electron-injection material or an electron-transport material of a light-emitting element is provided. An organic compound with which a display device having less crosstalk can be obtained is provided. A light-emitting device, a display device, and an electronic device each having less crosstalk are provided. An organic compound including two or three benzo[h]quinazoline rings is provided. In the organic compound, two or three benzo[h]quinazoline rings are preferably included in the substituent including an aromatic ring or a heteroaromatic ring and having 3 to 30 carbon atoms. When two or three benzo[h]quinazoline rings are included in a substituent particularly including a heteroaromatic ring and having 3 to 30 carbon atoms, a high electron-transport property can be obtained.
Abstract:
A novel organometallic complex with high emission efficiency is provided. The organometallic complex, which is represented by General Formula (G1), includes iridium and a ligand including an aryl group including a cyano group at the 1-position of a benzimidazole skeleton and a phenyl group at the 2-position of the benzimidazole skeleton. (In the formula, Ar1 represents an aryl group having one or more substituents and 6 to 13 carbon atoms, and Ar1 includes at least one cyano group as the substituent. Each of R1 to R8 separately represents any of hydrogen, a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 6 carbon atoms, a substituted or unsubstituted aryl group having 6 to 13 carbon atoms, a substituted or unsubstituted heteroaryl group having 3 to 12 carbon atoms, and a cyano group.)
Abstract:
To provide an organometallic complex with high emission efficiency and high heat resistance, which emits yellow green light. The organometallic complex includes a metal and a ligand which is a benzo[h]quinazoline skeleton including a condensed ring bonded to benzo[h]quinazoline through a carbon-carbon bond between the 5-position and the 6-position. The organometallic complex has a structure represented by General Formula (G1). In General Formula (G1), M represents a metal belonging to Group 9 or 10; each of R1 to R4 independently represents hydrogen, a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 10 carbon atoms; and R5 represents hydrogen, a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, or a substituted or unsubstituted phenyl group. A ring X represents a substituted or unsubstituted six-membered aromatic ring formed with carbon or both carbon and nitrogen.
Abstract translation:提供发射黄绿色光的高发光效率和高耐热性的有机金属配合物。 有机金属络合物包括金属和配位体,其是苯并[h]喹唑啉骨架,其包括通过5-位和6-位之间的碳 - 碳键与苯并[h]喹唑啉结合的稠环。 有机金属配合物具有由通式(G1)表示的结构。 在通式(G1)中,M表示属于第9或10族的金属; R 1〜R 4各自独立地表示氢,取代或未取代的碳原子数1〜6的烷基或取代或未取代的碳数为6〜10的芳基。 R 5表示氢,取代或未取代的碳原子数1〜6的烷基或取代或未取代的苯基。 环X表示由碳或碳和氮两者形成的取代或未取代的六元芳环。
Abstract:
Provided is a light-emitting element with high emission efficiency. The light-emitting element includes a first organic compound, a second organic compound, and a guest material. The LUMO level of the first organic compound is lower than that of the second organic compound, and the HOMO level of the first organic compound is lower than that of the second organic compound. The LUMO level of a guest material is higher than that of the first organic compound, and the HOMO level of the guest material is lower than that of the second organic compound. The guest material has a function of converting triplet excitation energy into light emission. The first organic compound and the second organic compound form an exciplex.
Abstract:
To provide a novel organometallic complex. The organometallic complex is represented by General Formula (G1) and includes a central metal, a first ligand, and a second ligand. The first ligand and the second ligand are cyclometalated ligands. At least one of the first ligand and the second ligand includes a substituted or unsubstituted aryl group as a substituent. In General Formula (G1), each of R1 to R15 independently represents any of hydrogen, a halogen group, a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted aryl group having 6 to 13 carbon atoms, and a substituted or unsubstituted heteroaryl group having 3 to 12 carbon atoms. Note that at least one of R1 to R15 represents a substituted or unsubstituted aryl group having 6 to 13 carbon atoms.
Abstract:
Provided is a light-emitting element with high emission efficiency. The light-emitting element includes a first organic compound, a second organic compound, and a guest material. The LUMO level of the first organic compound is lower than that of the second organic compound, and the HOMO level of the first organic compound is lower than that of the second organic compound. The LUMO level of a guest material is higher than that of the first organic compound, and the HOMO level of the guest material is lower than that of the second organic compound. The guest material has a function of converting triplet excitation energy into light emission. The first organic compound and the second organic compound form an exciplex.
Abstract:
An object is to provide an organic compound having high heat resistance and a light-emitting element, a light-emitting device, an electronic device, and a display device each having high reliability. Provided are an organic compound having a 2,2′-(pyridine-2,6-diyl)bipyrimidine skeleton in which the 2-positions of pyrimidine skeletons are bonded to the 2- and 6-positions of a pyridine skeleton, and having a structure in which at least one aryl group having a fused structure with 10 to 16 carbon atoms is bonded to the 2,2′-(pyridine-2,6-diyl)bipyrimidine skeleton, and a light-emitting element, a light-emitting device, an electronic device, and a display device each containing the organic compound.
Abstract:
A high-purity organometallic iridium complex is provided. The organometallic iridium complex includes iridium and a plurality of ligands cyclometallated to the iridium. Each of the plurality of ligands includes a heteroaromatic ring having a coordinatable nitrogen atom. In LC analysis of the organometallic iridium complex, an impurity which has a monochlorinated ligand among the plurality of ligands is 0.1% or less by quantitating using peak area count with a PDA detector.