Abstract:
To provide a novel material for a liquid crystal composition that can be used for various liquid crystal display devices. A novel isosorbide derivative represented by General Formula (G2) is provided. In General Formula (G2), Ar1, Ar2, Ar3, and Ar4 each independently represent a substituted or unsubstituted arylene group having 6 to 12 carbon atoms, a substituted or unsubstituted cycloalkylene group having 3 to 12 carbon atoms, or a substituted or unsubstituted cycloalkenylene group having 4 to 12 carbon atoms; l, k, m, and n each independently represent any of 0 to 3; R21 and R23 each independently represent oxygen, a single bond, or a substituted or unsubstituted alkylene group having 1 to 12 carbon atoms; and R22 and R24 each independently represent hydrogen, oxygen, a substituted or unsubstituted alkyl group having 1 to 12 carbon atoms, or a substituted or unsubstituted alkoxy group having 1 to 12 carbon atoms.
Abstract translation:提供可用于各种液晶显示装置的液晶组合物的新型材料。 提供由通式(G2)表示的新型异山梨醇衍生物。 在通式(G2)中,Ar1,Ar2,Ar3和Ar4各自独立地表示取代或未取代的碳原子数为6〜12的亚芳基,取代或未取代的碳原子数为3〜12的亚环烷基,或取代或未取代的亚环烯基 具有4至12个碳原子的基团; l,k,m和n各自独立地表示0〜3中的任一个。 R 21和R 23各自独立地表示氧,单键或取代或未取代的碳原子数1〜12的亚烷基。 R 22和R 24各自独立地表示氢,氧,取代或未取代的碳原子数1〜12的烷基或取代或未取代的碳原子数1〜12的烷氧基。
Abstract:
A dioxolane derivative represented by formula (G1) is provided. The explanation of the substituents is given in the specification. The use of the dioxolane derivative enables the production of a liquid crystal composition and a liquid crystal display device including the liquid crystal composition.
Abstract:
A novel substance with which an increase in life and emission efficiency of a light-emitting element can be achieved is provided. A carbazole compound having a structure represented by General Formula (G1) is provided. Note that a substituent which makes the HOMO level and the LUMO level of a compound in which a bond of the substituent is substituted with hydrogen deep and shallow, respectively is used as each of substituents in General Formula (G1) (R1, R2, Ar3, and α3). Further, a substituent which makes the band gap (Bg) and the T1 level of a compound in which a bond of the substituent is substituted with hydrogen wide and high is used as each of the substituents in General Formula (G1) (R1, R2, Ar3, and α3).
Abstract:
A novel organic compound that can be used as a carrier-transport material, a host material, or a light-emitting material in a light-emitting element is provided. Specifically, an organic compound that can give a light-emitting element having favorable characteristics even when the organic compound is used in a light-emitting element emitting phosphorescence is provided. The organic compound has a bipyridine skeleton formed by two pyridine skeletons to each of which a dibenzothiophenyl group or a dibenzofuranyl group is bonded via an arylene group.
Abstract:
Provided is a heterocyclic compound that can be used for a carrier-transport material, a host material, or a light-emitting material in a light-emitting element. The heterocyclic compound has an indolo[3,2,1-jk]carbazole skeleton and a dibenzo[f,h]quinoxaline skeleton which are linked to each other through an arylene group. The wide band gap of the heterocyclic compound allows excitation of a green-emissive phosphorescent material, which contributes to the formation of a highly efficient light-emitting element.
Abstract:
A novel compound having high triplet excitation energy and a bipolar property is provided. Specifically, a phenanthrene compound represented by General Formula (G1) is provided where R11 to R19 and R21 to R27 separately represent any one of hydrogen, an alkyl group having 1 to 4 carbon atoms, and a substituted or unsubstituted aryl group having 6 to 13 carbon atoms, Ar represents a substituted or unsubstituted arylene group having 6 to 13 carbon atoms, and Z represents a sulfur atom or an oxygen atom. The use of the phenanthrene compound as a host material of a light-emitting layer in the presence of a phosphorescent dopant allows the formation of a light-emitting element with high current efficiency.
Abstract:
A liquid crystal composition exhibiting a blue phase, which enables higher contrast, and a liquid crystal display device including the liquid crystal composition. The liquid crystal composition contains a chiral agent and liquid crystal containing a compound having three electron-withdrawing groups as end groups of a structure where a plurality of rings including at least one aromatic ring is linked to each other directly or with a linking group laid therebetween. At least one of the three electron-withdrawing groups includes a trifluoromethyl group. The peak of the diffracted wavelength on the longest wavelength side in the reflectance spectrum of the liquid crystal composition is less than or equal to 450 nm, preferably less than or equal to 420 nm. Furthermore, a liquid crystal display device can be provided with the use of the liquid crystal composition.
Abstract:
A novel substance with which an increase in life and emission efficiency of a light-emitting element can be achieved is provided. A carbazole compound having a structure represented by General Formula (G1) is provided. Note that a substituent which makes the HOMO level and the LUMO level of a compound in which a bond of the substituent is substituted with hydrogen deep and shallow, respectively is used as each of substituents in General Formula (G1) (R1, R2, Ar3, and α3). Further, a substituent which makes the band gap (Bg) and the T1 level of a compound in which a bond of the substituent is substituted with hydrogen wide and high is used as each of the substituents in General Formula (G1) (R1, R2, Ar3, and α3).
Abstract:
A novel substance with which an increase in life and emission efficiency of a light-emitting element can be achieved is provided. A carbazole compound having a structure represented by General Formula (G1) is provided. Note that a substituent which makes the HOMO level and the LUMO level of a compound in which a bond of the substituent is substituted with hydrogen deep and shallow, respectively is used as each of substituents in General Formula (G1) (R1, R2, Ar3, and α3). Further, a substituent which makes the band gap (Bg) and the T1 level of a compound in which a bond of the substituent is substituted with hydrogen wide and high is used as each of the substituents in General Formula (G1) (R1, R2, Ar3, and α3).
Abstract:
Provided is a novel liquid crystal composition that can be used for a variety of liquid crystal devices. The novel liquid crystal composition exhibits a blue phase and includes a binaphthyl compound represented by a general formula (G1) as a chiral agent. In the general formula (G1), Ar2 represents any of an aryl group having 6 to 12 carbon atoms and a cycloalkyl group having 3 to 12 carbon atoms; n is 0 to 3; and one of R and R1 represents a substituent represented by a general formula (G2) and the other represents hydrogen. In the general formula (G2), Ar1 represents any of an aryl group having 6 to 12 carbon atoms and a cycloalkyl group having 3 to 12 carbon atoms; and k is 1 to 3.