摘要:
Provided is a Na based secondary battery including: an anode containing sodium or a sodium alloy; a cathode containing a metal halide, which is a halide of at least one metal selected from a group consisting of alkali metals, transition metals, and Groups 12 to 14 metals, and a solvent dissolving the metal halide; and a sodium ion conductive solid electrolyte separating the cathode and the anode from each other.
摘要:
Provided is a sodium secondary battery including a graphite felt having a maximum porosity on a surface facing a solid electrolyte and a decreased porosity in a thickness direction, as a cathode current collector impregnated with an electrolyte.
摘要:
Provided is a cathode active material for a secondary battery, specifically, a cathode active material for a secondary battery including sodium transition metal pyrophosphate satisfying Na3.12−x2Acx1M1ay1M2by2 (P2O7) z, which has an advantage of structural stability due to a strong P—O bond of sodium transition metal phosphate having an olivine structure, and also performs proper intercalation and deintercalation of Na ions having a large ion radius, thereby significantly improving reversibility during charging and discharging, and a charge and discharge rate.
摘要:
Provided are an electrolyte for a sodium secondary battery and a sodium secondary battery using the same. More particularly, the sodium secondary battery includes an anode containing sodium, a cathode containing a transition metal, and a sodium ion conductive solid electrolyte provided between the anode and the cathode, wherein the cathode is impregnated in an electrolyte containing a molten sodium salt and an electrolyte additive, the electrolyte additive including an inorganic sodium salt.
摘要:
Provided is a sodium secondary battery including: a sodium ion conductive solid electrolyte separating an anode space and a cathode space from each other; an anode positioned in the anode space and containing sodium; a cathode solution positioned in the cathode space; and a cathode immersed in the cathode solution and including graphite felt formed with open pore channel of which an opening part is formed on a surface of the graphite felt facing the solid electrolyte.
摘要:
Provided is a sodium secondary battery capable of operating at a low temperature. More particularly, the sodium secondary battery according to the present invention includes: an anode containing sodium; a cathode containing a transition metal and an alkali metal halide; and a sodium ion conductive solid electrolyte provided between the anode and the cathode, wherein the cathode is impregnated in a molten salt electrolyte containing a sodium.metal halogen salt including at least two kinds of halogens.
摘要:
Provided are an electrolyte for a sodium secondary battery, and a sodium secondary battery using the same, and the sodium secondary battery using the electrolyte for a sodium secondary battery according to the present invention may have an excellent cycle characteristic, charge-discharge capacity, and stability, thereby making it possible to be operated without deterioration at a low temperature for a long time.
摘要:
Provided is a sodium secondary battery including a graphite felt having a maximum porosity on a surface facing a solid electrolyte and a decreased porosity in a thickness direction, as a cathode current collector impregnated with an electrolyte.
摘要:
Provided are an electrolyte for a sodium secondary battery, and a sodium secondary battery using the same, and the sodium secondary battery using the electrolyte for a sodium secondary battery according to the present invention may have an excellent cycle characteristic, charge-discharge capacity, and stability, thereby making it possible to be operated without deterioration at a low temperature for a long time.
摘要:
Provided is a cathode active material for a secondary battery, specifically, a cathode active material for a secondary battery including sodium transition metal pyrophosphate satisfying Na3.12−x2Acx1M1ay1M2by2 (P2O7)z, which has an advantage of structural stability due to a strong P—O bond of sodium transition metal phosphate having an olivine structure, and also performs proper intercalation and deintercalation of Na ions having a large ion radius, thereby significantly improving reversibility during charging and discharging, and a charge and discharge rate.