Motion constraint-aided underwater integrated navigation method employing improved Sage-Husa adaptive filtering

    公开(公告)号:US11754400B2

    公开(公告)日:2023-09-12

    申请号:US17779167

    申请日:2021-07-28

    CPC classification number: G01C21/20 G01C21/16

    Abstract: A motion constraint-aided underwater integrated navigation method employing improved Sage-Husa adaptive filtering includes establishing a Doppler log error model; constructing a state equation for an underwater integrated navigation system employing Kalman filtering; according to a relationship between a centripetal acceleration and a forward velocity of an underwater vehicle, establishing a constraint condition, and constructing a complete motion constraint model; establishing two measurement equations; and establishing a filter equation, conducting calculation by using a standard Kalman filtering algorithm when an underwater glider normally runs, and conducting time updating, measurement updating and filtering updating by using an improved Sage-Husa adaptive filtering algorithm when a measurement noise varies. The motion constraint-aided underwater integrated navigation method improves a filtering accuracy of the underwater integrated navigation system, restrains a filter divergence and has robustness and reliability.

    Method for decoupling angular velocity in transfer alignment process under dynamic deformation

    公开(公告)号:US11293759B2

    公开(公告)日:2022-04-05

    申请号:US16980860

    申请日:2019-03-12

    Abstract: A method for decoupling an angular velocity in a transfer alignment process under a dynamic deformation includes: (1) generating, by a trajectory generator, information about an attitude, a velocity, and a position of a main inertial navigation system and an output of an inertial device, and simulating a bending deformation angle {right arrow over (θ)} between the main inertial navigation system and a slave inertial navigation system and a bending deformation angular velocity {right arrow over (ω)}θ by using second-order Markov; (2) decomposing the dynamic deformation into a vibration deformation and a bending deformation, and establishing an angular velocity model under the dynamic deformation of a wing; (3) deducing an error angle Δ{right arrow over (ϕ)} between the main inertial navigation system and the slave inertial navigation system; and (4) deducing an expression Δ{right arrow over (ω)} of a coupling error angular velocity, and applying that to an angular velocity matching process of transfer alignment to improve the precision of the transfer alignment.

Patent Agency Ranking