Abstract:
A method for manufacturing a device for ejecting a fluid, including producing a nozzle plate including: forming a first nozzle cavity, having a first diameter, in a first semiconductor body; forming a hydrophilic layer at least in part in the first nozzle cavity; forming a structural layer on the hydrophilic layer; etching the structural layer to form a second nozzle cavity aligned to the first nozzle cavity in a fluid-ejection direction and having a second diameter larger than the first diameter; proceeding with etching of the structural layer for removing portions thereof in the first nozzle cavity, to reach the hydrophilic layer and arranged in fluid communication the first and second nozzle cavities; and coupling the nozzle plate with a chamber for containing the fluid.
Abstract:
A method for manufacturing a device for ejecting a fluid, including producing a nozzle plate including: forming a first nozzle cavity, having a first diameter, in a first semiconductor body; forming a hydrophilic layer at least in part in the first nozzle cavity; forming a structural layer on the hydrophilic layer; etching the structural layer to form a second nozzle cavity aligned to the first nozzle cavity in a fluid-ejection direction and having a second diameter larger than the first diameter; proceeding with etching of the structural layer for removing portions thereof in the first nozzle cavity, to reach the hydrophilic layer and arranged in fluid communication the first and second nozzle cavities; and coupling the nozzle plate with a chamber for containing the fluid.
Abstract:
A microelectromechanical sensing structure for a capacitive acoustic transducer, including: a semiconductor substrate; a rigid electrode; and a membrane set between the substrate and the rigid electrode, the membrane having a first surface and a second surface, which are in fluid communication, respectively, with a first chamber and a second chamber, respectively, the first chamber being delimited at least in part by a first wall portion and a second wall portion formed at least in part by the substrate, the second chamber being delimited at least in part by the rigid electrode, the membrane being moreover designed to undergo deformation following upon incidence of pressure waves and facing the rigid electrode so as to form a sensing capacitor having a capacitance that varies as a function of the deformation of the membrane. The structure moreover includes a beam, which is connected to the first and second wall portions and is designed to limit the oscillations of the membrane.
Abstract:
A method for manufacturing a device for ejecting a fluid, including producing a nozzle plate including: forming a first nozzle cavity, having a first diameter, in a first semiconductor body; forming a hydrophilic layer at least in part in the first nozzle cavity; forming a structural layer on the hydrophilic layer; etching the structural layer to form a second nozzle cavity aligned to the first nozzle cavity in a fluid-ejection direction and having a second diameter larger than the first diameter; proceeding with etching of the structural layer for removing portions thereof in the first nozzle cavity, to reach the hydrophilic layer and arranged in fluid communication the first and second nozzle cavities; and coupling the nozzle plate with a chamber for containing the fluid.
Abstract:
A method for manufacturing a device for ejecting a fluid, including producing a nozzle plate including: forming a first nozzle cavity, having a first diameter, in a first semiconductor body; forming a hydrophilic layer at least in part in the first nozzle cavity; forming a structural layer on the hydrophilic layer; etching the structural layer to form a second nozzle cavity aligned to the first nozzle cavity in a fluid-ejection direction and having a second diameter larger than the first diameter; proceeding with etching of the structural layer for removing portions thereof in the first nozzle cavity, to reach the hydrophilic layer and arranged in fluid communication the first and second nozzle cavities; and coupling the nozzle plate with a chamber for containing the fluid.
Abstract:
A microelectromechanical sensing structure for a capacitive acoustic transducer, including: a semiconductor substrate; a rigid electrode; and a membrane set between the substrate and the rigid electrode, the membrane having a first surface and a second surface, which are in fluid communication, respectively, with a first chamber and a second chamber, respectively, the first chamber being delimited at least in part by a first wall portion and a second wall portion formed at least in part by the substrate, the second chamber being delimited at least in part by the rigid electrode, the membrane being moreover designed to undergo deformation following upon incidence of pressure waves and facing the rigid electrode so as to form a sensing capacitor having a capacitance that varies as a function of the deformation of the membrane. The structure moreover includes a beam, which is connected to the first and second wall portions and is designed to limit the oscillations of the membrane.