Abstract:
A protective circuit for an apparatus includes an accelerometer having an output and a microcontroller coupled to the output of the accelerometer. The protective circuit also includes a switch for controlling the apparatus coupled to an output of the microcontroller and a load coupled to the switch. A power source is coupled to the load and the switch. In operation the microcontroller is cable of sending a signal to the switch to turn of power to the load when a dangerous condition as detected from the accelerometer data has occurred.
Abstract:
A boost circuit is used for power factor correction (PFC). In a low power application, transition mode control is utilized. However, switching frequency varies with different input voltages, and over a wide input voltage range, the switching frequency can become too high to be practical. To address this issue, a boost circuit is provided whose effective inductance changes as a function of input voltage. By changing the inductance, control is exercised over switching frequency.
Abstract:
A protective circuit for an apparatus includes an accelerometer having an output and a microcontroller coupled to the output of the accelerometer. The protective circuit also includes a switch for controlling the apparatus coupled to an output of the microcontroller and a load coupled to the switch. A power source is coupled to the load and the switch. In operation the microcontroller is cable of sending a signal to the switch to turn of power to the load when a dangerous condition as detected from the accelerometer data has occurred.
Abstract:
A device and method are provided for detecting a root moisture content of clothing in a clothes dryer. The dryer has two conducting bars situated in the dryer bin. A pulse generator circuit is coupled to the conducting bars. A microcontroller is coupled to an output of the pulse generator circuit. The pulse generator circuit generates a pulse when wet clothing contacts the conducting bars in the dryer bin. The microcontroller receives the pulses and counts the pulses that are longer than a threshold length. The microcontroller issues a termination signal based on the number of counted pulses.
Abstract:
A protective circuit for an apparatus includes an accelerometer having an output and a microcontroller coupled to the output of the accelerometer. The protective circuit also includes a switch for controlling the apparatus coupled to an output of the microcontroller and a load coupled to the switch. A power source is coupled to the load and the switch. In operation the microcontroller is cable of sending a signal to the switch to turn of power to the load when a dangerous condition as detected from the accelerometer data has occurred.
Abstract:
A protective circuit for an apparatus includes an accelerometer having an output and a microcontroller coupled to the output of the accelerometer. The protective circuit also includes a switch for controlling the apparatus coupled to an output of the microcontroller and a load coupled to the switch. A power source is coupled to the load and the switch. In operation the microcontroller is cable of sending a signal to the switch to turn of power to the load when a dangerous condition as detected from the accelerometer data has occurred.
Abstract:
A device and method are provided for detecting a root moisture content of clothing in a clothes dryer. The dryer has two conducting bars situated in the dryer bin. A pulse generator circuit is coupled to the conducting bars. A microcontroller is coupled to an output of the pulse generator circuit. The pulse generator circuit generates a pulse when wet clothing contacts the conducting bars in the dryer bin. The microcontroller receives the pulses and counts the pulses that are longer than a threshold length. The microcontroller issues a termination signal based on the number of counted pulses.
Abstract:
A boost circuit is used for power factor correction (PFC). In a low power application, transition mode control is utilized. However, switching frequency varies with different input voltages, and over a wide input voltage range, the switching frequency can become too high to be practical. To address this issue, a boost circuit is provided whose effective inductance changes as a function of input voltage. By changing the inductance, control is exercised over switching frequency.