Abstract:
An electro-optic device may include a photonic chip having an optical grating coupler at a surface. The optical grating coupler may include a first semiconductor layer having a first base and first fingers extending outwardly from the first base. The optical grating coupler may include a second semiconductor layer having a second base and second fingers extending outwardly from the second base and being interdigitated with the first fingers to define semiconductor junction areas, with the first and second fingers having a non-uniform width. The electro-optic device may include a circuit coupled to the optical grating coupler and configured to bias the semiconductor junction areas and change one or more optical characteristics of the optical grating coupler.
Abstract:
An electro-optic device may include a photonic chip having an optical grating coupler at a surface. The optical grating coupler may include a first semiconductor layer having a first base and first fingers extending outwardly from the first base. The optical grating coupler may include a second semiconductor layer having a second base and second fingers extending outwardly from the second base and being interdigitated with the first fingers to define semiconductor junction areas, with the first and second fingers having a non-uniform width. The electro-optic device may include a circuit coupled to the optical grating coupler and configured to bias the semiconductor junction areas and change one or more optical characteristics of the optical grating coupler.
Abstract:
An integrated modulator of the Mach-Zehnder type includes two optical arms containing waveguides with PN junctions and biasing circuits for reverse biasing the PN junctions in response to a control signal. The two optical arms are situated within a semiconductor substrate of a first element that also has an interconnection region. The biasing circuits are situated, in part, within a substrate of a second element that also contains an interconnection region. The first and second elements are rigidly attached to each other via their respective interconnection regions.
Abstract:
A method is for testing a photonic integrated circuit (IC) that includes a test structure having a test optical splitter, a test optical input, and first and second test optical outputs. A device under test (DUT) is coupled between the first test optical output and the first output of the test optical splitter. The deembedding structure includes a deembedding optical splitter, a deembedding optical input and first and second deembedding optical outputs. The method includes coupling a test probe device to the test optical inputs and outputs and the deembedding optical inputs and outputs and operating the test probe device to make at least one test measurement related to the DUT and at least one deembedding measurement. The at least one test measurement is processed with the at least one deembedding measurement to determine whether the DUT is acceptable and independent of alignment error.