Abstract:
An optical modulator includes an optical waveguide including at least a first PN junction phase shifter and a second PN junction phase shifter. A driver circuit drives operation of the first and second PN junction phase shifters in response to a pulse amplitude modulated (PAM) analog signal having 2n levels. The PAM analog signal is generated by a digital to analog converter that receives an n-bit input signal. In an implementation, the optical waveguide and PN junction phase shifters are formed on a first integrated circuit chip and the driver circuit is formed on a second integrated circuit chip that is stacked on and electrically connected to the first integrated circuit chip.
Abstract:
An integrated modulator of the Mach-Zehnder type includes two optical arms containing waveguides with PN junctions and biasing circuits for reverse biasing the PN junctions in response to a control signal. The two optical arms are situated within a semiconductor substrate of a first element that also has an interconnection region. The biasing circuits are situated, in part, within a substrate of a second element that also contains an interconnection region. The first and second elements are rigidly attached to each other via their respective interconnection regions.
Abstract:
A Mach-Zehnder ring modulator includes a first optical path having a first diode and a optical path having a second diode. Each of the first and second diodes operates responsive to a voltage signal by modifying a phase of a light signal. A first optical coupler provides first and second light signals to the first and second optical paths, respectively. A second optical coupler couples outputs from the first and second optical paths. A feedback path is coupled between an output of the second optical coupler and an input of the first optical coupler.
Abstract:
A Mach-Zehnder modulator (MZM) includes a first optical path with a first diode coupled to a first voltage signal node and configured to modify a phase of a first light signal transmitted through the first optical path. A further diode is positioned in the first optical path and configured to introduce a phase shift to the first light signal. A second optical path includes a second diode coupled to a second voltage signal node and configured to modify a phase of a second light signal transmitted through the second optical path. A first voltage signal carried on the first voltage signal node and a second voltage signal carried on the second voltage signal node each vary between a reverse biasing voltage level and a forward biasing voltage level. An optical coupler is coupled the first and second optical paths.
Abstract:
In accordance with an embodiment of the present invention, an optical switch includes a photoconductor body including a first edge and an opposite second edge, a first end and an opposite second end. The first edge is configured to receive an electrical input signal and the second edge is configured to deliver an electrical output signal. The photoconductor body is configured to have an electrically ON state that is activated by an optical signal and an electrically OFF state that is activated by an absence of the optical signal. A direction from the first end to the second end defines a longitudinal direction. The direction from the first edge to the second edge defines a first direction that is orthogonal to the longitudinal direction. A first dimension between the first edge and the second edge along the first direction decreases from the first end to the second end.
Abstract:
The present disclosure relates to a device for generating a clock signal including a first photoresistor coupling a capacitive output node to a node receiving a first potential. A second photoresistor couples the capacitive node to a node receiving a second potential. The first and second photoresistors receive the same optical pulses of a mode-locked laser at instants in time offset by a first delay.
Abstract:
The present disclosure relates to a device for converting an optical pulse to an electronic pulse includes a photoresistor having first and second terminals and being capable of receiving a pulsed laser signal arising from a mode-locked laser source The first terminal is linked to a node for applying a reference potential via a resistive element and a capacitive element connected in parallel. The second terminal is connected to a node for applying a supply potential.
Abstract:
A Mach-Zehnder modulator (MZM) includes a first optical path with a first diode coupled to a first voltage signal node and configured to modify a phase of a first light signal transmitted through the first optical path. A further diode is positioned in the first optical path and configured to introduce a phase shift to the first light signal. A second optical path includes a second diode coupled to a second voltage signal node and configured to modify a phase of a second light signal transmitted through the second optical path. A first voltage signal carried on the first voltage signal node and a second voltage signal carried on the second voltage signal node each vary between a reverse biasing voltage level and a forward biasing voltage level. An optical coupler is coupled to the first and second optical paths.
Abstract:
The present disclosure relates to a device for converting an optical pulse to an electronic pulse includes a photoresistor having first and second terminals and being capable of receiving a pulsed laser signal arising from a mode-locked laser source The first terminal is linked to a node for applying a reference potential via a resistive element and a capacitive element connected in parallel. The second terminal is connected to a node for applying a supply potential.
Abstract:
In accordance with an embodiment of the present invention, an optical switch includes a photoconductor body including a first edge and an opposite second edge, a first end and an opposite second end. The first edge is configured to receive an electrical input signal and the second edge is configured to deliver an electrical output signal. The photoconductor body is configured to have an electrically ON state that is activated by an optical signal and an electrically OFF state that is activated by an absence of the optical signal. A direction from the first end to the second end defines a longitudinal direction. The direction from the first edge to the second edge defines a first direction that is orthogonal to the longitudinal direction. A first dimension between the first edge and the second edge along the first direction decreases from the first end to the second end.