Abstract:
Embodiments described herein include an input device with a plurality of capacitive sensor electrodes configured to receive a signal. The input device also includes a processing system coupled to the plurality of capacitive sensor electrodes. The processing system includes an analog front end (AFE). The AFE includes an anti-aliasing filter comprising a continuous time analog infinite impulse response (IIR) filter configured to filter out interference from the received signal at frequencies higher than a signal frequency of the processing system to produce an anti-aliased signal. The AFE also includes a charge integrator configured to integrate the anti-aliased signal.
Abstract:
In an example, a capacitive image sensor comprises a first sensor electrode, a second sensor electrode, and a third sensor electrode. The first sensor electrode is disposed on a first surface of a substrate configured to transmit a transmitter signal. The second sensor electrode is disposed on the first surface of the substrate configured to receive a resulting signal. The third sensor electrode is disposed on the first surface of the substrate such that the second sensor electrode is at least partially between the first sensor electrode and the third sensor electrode.
Abstract:
A capacitance measurement circuit comprises a differential amplifier with first and second inputs and an output, first and second feedback capacitances, and a reset mechanism. The first input is coupled to a modulated reference voltage and the second input is coupled with a sensor electrode. A first feedback capacitance is coupled between the output and the second input. A second feedback capacitance is coupled between the output and the second input. The reset mechanism resets the first feedback capacitance to a first level of charge and the second feedback capacitance to a second level of charge. During an absolute capacitance measurement phase, the differential amplifier charges the sensor electrode while balancing voltages on the first and second inputs to a voltage level associated with the modulated reference voltage and integrates charge on the sensor electrode to measure capacitance corresponding to a coupling between the sensor electrode and an input object.
Abstract:
This disclosure generally provides an input device that includes a multi-layered capacitive sensor which includes a first layer disposed over a second layer that contains a plurality of sensor electrodes coupled to respective traces. The first and second layers form a capacitive sensing stack where the first layer is between the second layer and a touch surface for interacting with the input object. The first and second layers may be disposed on either the same substrate or different substrates in the stack. In one embodiment, the first layer includes electrically floating electrodes and at least one guard electrode. These components may align with respective components in the second layer. For example, the electrically floating electrodes in the first layer may at least partially cover the sensor electrodes in the second layer.
Abstract:
Embodiments of the invention generally provide a method and apparatus that is configured to reduce the effects of interference that is undesirably provided to a transmitter signal that is delivered from a transmitter signal generating device to a sensor processor to determine if an input object is disposed within a touch sensing region of a touch sensing device. In one embodiment, the sensor processor includes a receiver channel that has circuitry that is configured to separately receive a transmitter signal delivered from a display processor and a sensor processor reference signal that is based on a display processor reference signal to reliably sense the presence of an object. Embodiments of the invention described herein thus provide an improved apparatus and method for reliably sensing the presence of an object by a touch sensing device.
Abstract:
A differential amplifier has an output and differential first and second inputs. A switch disposed between a sensor electrode and the second input is opened to initiate a reset phase where the sensor electrode and the differential amplifier are decoupled. A feedback capacitance disposed between the second input and the output is reset to a first level of charge. The switch is closed to initiate a measurement phase where the second input and sensor electrode are coupled. In the measurement phase: charge is balanced between the sensor electrode and the feedback capacitance such that a sensor electrode voltage equals a voltage of the first input equals a voltage of the second input, and the sensor electrode is charged; and the differential amplifier is utilized to integrate charge on the sensor electrode, such that an absolute capacitance corresponding to a coupling between the sensor electrode and an input object is measured.
Abstract:
In an example, a processing system for an integrated display and capacitive sensing device includes a sensor module and a determination module. The sensor module includes sensor circuitry configured to be coupled to a plurality of sensor electrodes. The sensor module is configured to receive an active pen signal with at least one sensor electrode of the plurality the sensor electrodes. The determination module is configured to adjust a sensing period of the sensor module for alignment with a transmission period of the active pen signal.
Abstract:
An input device comprises a first plurality of sensor electrodes, a second plurality of sensor electrodes, and a processing system. The processing system comprises a first integrated circuit, a second integrated circuit, and a central controller. The first integrated circuit is coupled to the first plurality of sensor electrodes and configured to receive first resulting signals therewith. The second integrated circuit is coupled to the second plurality of sensor electrodes and configured to receive second resulting signals therewith. The central controller is communicatively coupled to the first and second integrated circuits. The central controller is configured to receive the first resulting signals from the first integrated circuit and the second resulting signals from the second integrated circuit and is configured to determine positional information from the first resulting signals and the second resulting signals and to communicate the positional information to a host processor.
Abstract:
Embodiments in the present disclosure use various individual electrodes in a capacitive sensing pixel of an electrode matrix to perform two different techniques of capacitive sensing. For example, a capacitive sensing pixel may include at least two sensor electrodes that may be driven different by a processing system depending on the current capacitive technique being used to user interaction. When performing absolute capacitive sensing, a first one of the sensor electrodes may be driven with a modulated signal in order to measure a change in absolute capacitance between the driven sensor electrode and an input object. Alternatively, when performing transcapacitance sensing, the first sensor electrode is driven with a transmitter signal while a resulting signal is measured on a second sensor electrode in the capacitive pixel. In this manner, the individual electrodes in a capacitive sensing pixel may be driven differently depending on the current capacitive sensing technique.
Abstract:
Embodiments of the invention generally provide an input device with display screens that periodically update (refresh) the screen by selectively driving common electrodes corresponding to pixels in a display line. In general, the input devices drive each electrode until each display line (and each pixel) of a display frame is updated. In addition to updating the display, the input device may perform capacitive sensing using the display screen as a proximity sensing area. To do this, the input device may interleave periods of capacitive sensing between periods of updating the display based on a display frame. For example, the input device may update the first half of display lines of the display screen, pause display updating, perform capacitive sensing, and finish updating the rest of the display lines. Further still, the input device may use common electrodes for both updating the display and performing capacitive sensing.