摘要:
Systems and methodologies are described that facilitate providing flow control feedback for controlling downlink data transmission rates. Various schemes can be utilized to send the flow control feedback from an access terminal to a base station. For example, a control PDU (e.g., MAC control PDU, PDCP control PDU) can be generated based upon a level of resource utilization of the access terminal, and sent to the base station for controlling the downlink data transmission rate. Following this example, a type of control PDU, a value included within the control PDU, etc. can be selected as a function of the level of resource utilization. By way of another illustration, a CQI report that includes a value selected as a function of the level of resource utilization associated with the access terminal can be generated and transmitted to the base station for controlling the downlink data transmission rate.
摘要:
Systems and methodologies are described that facilitate providing flow control feedback for controlling downlink data transmission rates. Various schemes can be utilized to send the flow control feedback from an access terminal to a base station. For example, a control PDU (e.g., MAC control PDU, PDCP control PDU) can be generated based upon a level of resource utilization of the access terminal, and sent to the base station for controlling the downlink data transmission rate. Following this example, a type of control PDU, a value included within the control PDU, etc. can be selected as a function of the level of resource utilization. By way of another illustration, a CQI report that includes a value selected as a function of the level of resource utilization associated with the access terminal can be generated and transmitted to the base station for controlling the downlink data transmission rate.
摘要:
Systems and methodologies are described that facilitate efficiently communicating a data packet related to a protocol layer within a wireless communication system. The systems and/or methods can provide cross-layer optimization by directly transporting or communicating data to a particular protocol layer. In general, a MAC header can include data that indicates a protocol layer to which such data is directed or targeted. The MAC header can allow a portion of data (e.g., PDUs, SDUs, etc.) to bypass at least one protocol layer above the MAC protocol layer for efficient and optimized processing of such data.
摘要:
A data packet communication system employs radio link control (RLC) transmission between a transmitter and a receiver with an Automatic Repeat Request (ARQ) arrangement whereby polling of the receiver is accomplished with reduced amount of redundantly transmitted data, such as between an access node and terminal. Upon a polling event, such as emptying of a transmission buffer of the transmitter, expiration of a polling timer, or reaching a radio link control (RLC) protocol data units (PDUs) count threshold, the transmitter sends a polling command to the receiver. This polling command is smaller than any of the RLC PDUs, which are conventionally resent with a polling bit set to evoke a STATUS PDU from the receiver. With evolving communication standards tending toward larger PDUs, such as in excess of a kilobyte for HSPA+ (High-Speed Packet Access Evolution) and 3GPP LTE (Long Term Evolution), this inefficiency can be of increasing impact.
摘要:
Systems and methodologies are described that facilitate efficiently communicating a data packet related to a protocol layer within a wireless communication system. The systems and/or methods can provide cross-layer optimization by directly transporting or communicating data to a particular protocol layer. In general, a MAC header can include data that indicates a protocol layer to which such data is directed or targeted. The MAC header can allow a portion of data (e.g., PDUs, SDUs, etc.) to bypass at least one protocol layer above the MAC protocol layer for efficient and optimized processing of such data.
摘要:
A data packet communication system employs radio link control (RLC) transmission between a transmitter and a receiver with an Automatic Repeat Request (ARQ) arrangement whereby polling of the receiver is accomplished with reduced amount of redundantly transmitted data, such as between an access node and terminal. Upon a polling event, such as emptying of a transmission buffer of the transmitter, expiration of a polling timer, or reaching a radio link control (RLC) protocol data units (PDUs) count threshold, the transmitter sends a polling command to the receiver. This polling command is smaller than any of the RLC PDUs, which are conventionally resent with a polling bit set to evoke a STATUS PDU from the receiver. With evolving communication standards tending toward larger PDUs, such as in excess of a kilobyte for HSPA+ (High-Speed Packet Access Evolution) and 3GPP LTE (Long Term Evolution), this inefficiency can be of increasing impact.
摘要:
Explicit signaling of End of Handover (EoH) advantageously indicates when user equipment (UE) has stopped using Packet Data Convergence Protocol (PDCP) handover mode. Radio Link Control (RLC) Acknowledge Mode (AM) delivers in order ensuring that all reordered packets have been received with no risk of delivering a gap packet when no longer in handover mode that would otherwise cause Hyper Frame Number (HFN) to be out of synchronization. Substantially at a time evolved Base Node (eNB) determines a gap will not be filled, eNB can convey an EoH indication to a served UE and can then deliver the PDCP Service Data Units (SDUs) with gaps to upper layers without delay.
摘要:
Systems and methodologies are described that facilitate identifying a plurality of keysets utilized in a communications network. The keysets can include ciphering keys that provide data encryption and decryption and integrity keys that provide data integrity protection. A key identifier can be included in a packet data convergence protocol header that indicates a keyset employed in connection with data in a protocol data unit. In addition, a route indicator can be provided in a radio link control header that distinguishes a source cell and a target cell in networks configured without RLC reset.
摘要:
An apparatus, method, processor(s), and computer program product avoids user data loss by network-controlled, user equipment assisted handover in a wireless data packet communication system. A wireless receiver receives radio link control (RLC) packet data units (PDUs) from user equipment (UE) being served by a source node. A wireless transmitter commands the UE to handover. A network communication interface transmits RLC Uplink (UL) context from the source node to the target node, and transmits RLC Downlink (DL) initialization message and buffered in-transit DL RLC PDUs from the source node to the target node.
摘要:
Techniques for sending data during handover with Layer 2 tunneling are described. In one design, a user equipment (UE) sends first Layer 2 packets to a source base station prior to handover to a target base station. The UE sends at least one second Layer 2 packet to the target base station, which identifies the second Layer 2 packet(s) as being intended for the source base station and thus forwards the second Layer 2 packet(s) to the source base station via a Layer 2 tunnel. The UE sends third Layer 2 packets to the target base station after the handover. The target base station processes the third Layer 2 packets to obtain IP packets and sends the IP packets to a serving gateway after a trigger condition, which may be defined to achieve in-order delivery of IP packets from the source and target base stations to the serving gateway.