Abstract:
An organic light-emitting device and a method of manufacturing the same, including a substrate; a plurality of first electrodes on the substrate in a first to third light-emitting region; a first common layer on the substrate, the first common layer covering the plurality of first electrodes; a first light-emitting layer in the first light-emitting region and on the first common layer; a second light-emitting layer in the second light-emitting region and on the first common layer; a third light-emitting layer in the third light-emitting region and on the first common layer; a second common layer that is commonly disposed on the first light-emitting layer, the second light-emitting layer, and the third light-emitting layer; a second electrode on the second common layer; and an auxiliary layer that is commonly disposed only in the first light-emitting region and the second light-emitting region between the first common layer and the second common layer.
Abstract:
An organic light-emitting device and an organic light-emitting display apparatus including the same are provided. The organic light-emitting device comprises pixels, each pixel comprising three sub-pixels, each sub-pixel comprising a layered structure, the individual layers comprising organic compounds. The layered structure can comprise organic light emission layers, resonance auxiliary layers that provide a thickness allowing the establishment of microcavity effects that increase luminance, and layers that facilitate electron transfer between the electrodes and the organic emission layers, such as doping auxiliary layers, hole injection layers, hole transport layers, electron injection layers and electron transport layers.
Abstract:
An organic light emitting display device may include a first substrate, a first electrode disposed on the first substrate, a pixel defining layer disposed on the first electrode and the first substrate, an organic light emitting structure disposed on the first electrode, a second electrode disposed on the organic light emitting structure and the pixel defining layer, a second substrate disposed on the second electrode, etc. The pixel defining layer may include a fine uneven structure positioned in the display and the non-display regions. The organic light emitting structure may be substantially uniformly formed on the first electrode through the pixel defining layer having the fine uneven structure, so that an organic light emitting display device may exhibit increased lifetime and may show improved image quality.
Abstract:
A donor substrate includes a base substrate, a light to heat conversion layer, a buffer layer and a transfer layer. The light to heat conversion layer may be disposed on the base substrate. The buffer layer may be disposed on the light to heat conversion layer. The buffer layer may include at least one porous layer having a plurality of pores. The transfer layer may be disposed on the buffer layer.
Abstract:
An organic light emitting display device includes a substrate; a thin film transistor disposed on the substrate; and an organic light emitting component disposed on the substrate and electrically connected to the thin film transistor. The organic light emitting component includes: a first electrode; a second electrode; and an intermediate layer disposed between the first electrode and the second electrode. The organic light emitting display device further includes: a temperature sensing unit disposed on the substrate, the temperature sensing unit being configured to operate differently based on an ambient temperature of the organic light emitting display device; a power driver configured to provide power to the temperature sensing unit; and a voltage control unit configured to: determine a driving voltage of the temperature sensing unit based on the power provided to the temperature sensing unit; and determine the ambient temperature based on the driving voltage.
Abstract:
An organic light emitting diode display includes a red pixel, a green pixel, and a blue pixel, each pixel including a pixel electrode, a hole supplementary layer on the pixel electrode, a blue organic emission layer on the hole supplementary layer, a first buffer layer on the blue organic emission layer, an electron supplementary layer on the first buffer layer, and a common electrode on the electron supplementary layer, the red pixel and the green pixel further include a red resonance auxiliary layer and a green resonance auxiliary layer respectively on the first buffer layer, a red organic emission layer and a green organic emission layer respectively on the red resonance auxiliary layer and the green resonance auxiliary layer, and a second buffer layer on the red organic emission layer and the green organic emission layer.
Abstract:
Provided is an organic light-emitting display apparatus including a substrate; a first pixel electrode for first color emission, a second pixel electrode for second color emission, and a third pixel electrode for third color emission, the first pixel electrode, the second pixel electrode, and the third pixel electrode being spaced apart from each other on the substrate; a first color emission layer on the first pixel electrode, a second color emission layer on the second pixel electrode, and a third color emission layer on the third pixel electrode; an opposite electrode on the first color emission layer, the second color emission layer, and the third color emission layer; and a capping layer that includes a same material as the opposite electrode and is porous.
Abstract:
A donor substrate for a laser transfer includes a base layer, a primer layer disposed on the base layer, a light-to-heat conversion layer disposed on the primer layer, and an intermediate layer disposed on the light-to-heat conversion layer, where the light-to-heat conversion layer includes graphene.
Abstract:
An organic light emitting diode display includes: a substrate; a thin film transistor provided on the substrate; a first electrode connected to the thin film transistor; an organic emission layer provided on the first electrode; an interlayer provided on the organic emission layer; an electron auxiliary layer provided on the interlayer and including an electron injection layer (EIL) and an electron transport layer (ETL); and a second electrode provided on the electron auxiliary layer, wherein the interlayer is made by mixing a material of the electron auxiliary layer.