Abstract:
Embodiments of the present disclosure provide terminal connection control method and apparatus in a base station of a mobile communication system which supports a Carrier Aggregation (CA) function. According an embodiment of the present disclosure, a method for control a connection of a terminal in a base station of a mobile communication system includes determining whether there is a Primary Cell (PCell) connection request from a terminal with respect to an i-th cell (herein, i is a positive integer greater than 0 and equal to or smaller than k) corresponding to one of k cells (herein, k is a positive integer greater than 0) in the base station; if there is the PCell connection request from the terminal, determining whether to allow the PCell connection for the i-th cell of the terminal based on a threshold load corresponding to a maximum limit of a resource allocated to each cell; and if the PCell connection for the i-th cell of the terminal is allowed, determining whether to release a Secondary Cell (SCell) connection for at least one or more terminals which maintain the SCell connection for the i-th cell by comparing an i-th resource load allocated to the i-th cell with the threshold load.
Abstract:
An adaptable antenna apparatus for a base station is provided. The adaptable antenna apparatus includes a first antenna having a first antenna array, a second antenna rotatably coupled to the first antenna and having a second antenna array, and a main controller provided in one of the first antenna and the second antenna, wherein the main controller is configured to apply a control signal to the first antenna and the second antenna.
Abstract:
A method and apparatus for configuring a routing path in a wireless communication system are provided. The method includes measuring a first distance between the terminal and a target terminal, transmitting information of the measured first distance to at least one neighboring terminal, receiving a second distance measured for the target terminal with respect to the terminal from the at least one neighboring terminal, and determining a neighboring terminal of which the second distance is the longest as a next terminal of the routing path.