Electronic apparatus and controlling method thereof

    公开(公告)号:US12147892B2

    公开(公告)日:2024-11-19

    申请号:US16843365

    申请日:2020-04-08

    Abstract: Provided is an electronic apparatus. The electronic apparatus includes a memory and a processor. The processor is configured to apply a low rank approximation using a matrix decomposition for a first square matrix among a plurality of square matrices based on parameter values of a deep learning model, and obtain a first approximated matrix and a second approximated matrix for the first square matrix, obtain second approximated matrices for each of a plurality of remaining square matrices other than the first square matrix among the plurality of square matrices, based on the first approximated matrix for the first square matrix, and store the first approximated matrix the first square matrix and the second approximated matrices for each of the plurality of square matrices in the memory.

    Electronic apparatus and method of performing operations thereof

    公开(公告)号:US11734577B2

    公开(公告)日:2023-08-22

    申请号:US16876688

    申请日:2020-05-18

    CPC classification number: G06N3/10 G06F17/16

    Abstract: A method for an electronic apparatus to perform an operation of an artificial intelligence model includes acquiring resource information for hardware of the electronic apparatus while a plurality of data used for an operation of a neural network model are stored in a memory, the plurality of data respectively having degrees of importance different from each other; obtaining data to be used for the operation of the neural network model among the plurality of data according to the degrees of importance of each of the plurality of data based on the acquired resource information; and performing the operation of the neural network model by using the obtained data.

    Electronic apparatus and control method thereof

    公开(公告)号:US11568254B2

    公开(公告)日:2023-01-31

    申请号:US16727323

    申请日:2019-12-26

    Abstract: An electronic apparatus is provided. The electronic apparatus includes sample data and memory storing a first matrix included in an artificial intelligence model trained based on sample data, and a processor configured to prunes each of a plurality of first elements included in the first matrix based on a first threshold, and acquire a first pruning index matrix that indicates whether each of the plurality of first elements has been pruned with binary data, factorize the first matrix to a second matrix of which size was determined based on the number of rows and the rank, and a third matrix of which size was determined based on the rank and the number of columns of the first matrix, prunes each of a plurality of second elements included in the second matrix based on a second threshold, and acquire a second pruning index matrix that indicates whether each of the plurality of second elements has been pruned with binary data, prunes each of a plurality of third elements included in the third matrix based on a third threshold, and acquire a third pruning index matrix that indicates whether each of the plurality of third elements has been pruned with binary data, acquire a final index matrix based on the second pruning index matrix and the third pruning index matrix, and update at least one of the second pruning index matrix or the third pruning index matrix by comparing the final index matrix with the first pruning index matrix.

Patent Agency Ranking