Abstract:
A packet-switched handover from a first cell to a second cell in a cellular network is discussed. Packet-switched services are provided for a mobile station in the first cell based on a set of information relating to provision of packet-switched services and a protocol for handling provision of packet-switched services for mobile stations, said protocol being a protocol between a cell and a respective control network element. In a control network element relating to the first cell a first message is received, which indicates a request for a packet-switched handover for a mobile station. In response to said first message, a second message is sent to the second cell. This second message requests creation of a set of information relating to provision of packet-switched services for the mobile station in the second cell, and the second message belongs to said protocol for handling provision of packet-switched services for mobile stations.
Abstract:
A packet-switched handover from a first cell to a second cell in a cellular network is discussed. Packet-switched services are provided for a mobile station in the first cell based on a set of information relating to provision of packet-switched services and a protocol for handling provision of packet-switched services for mobile stations, said protocol being a protocol between a cell and a respective control network element. In a control network element relating to the first cell a first message is received, which indicates a request for a packet-switched handover for a mobile station. In response to said first message, a second message is sent to the second cell. This second message requests creation of a set of information relating to provision of packet-switched services for the mobile station in the second cell, and the second message belongs to said protocol for handling provision of packet-switched services for mobile stations.
Abstract:
A method and a communication system which includes a first network element, e.g. portable terminal, connectable to a second network element. One of selectable modes is used for communication. A network element is adapted to perform a mode selection procedure for selecting the same mode for bidirectional communication between the network elements. The mode selection ensures the use of one and the same mode in uplink and downlink direction and thus enables e.g. IP telephony in UMTS using SIP protocol. The invention provides for facilitating a VoIP communication session by way of a radio link with a mobile station. The mobile station forms a QoS (Quality of Service) information element for communication to a radio access network portion. The QoS information element is indicating whether to remove packet header information of the data packets to be communicated upon the radio link pursuant to the communication session.
Abstract:
A method for transferring a data packet from a compressor to a decompressor said data packet including a header with header data fields. A number of the header data fields that remain constant during the data transfer are stored in the decompressor. In a compressed data packet, a header data field that varies is replaced by a compressed value identifying a data packet in a compression sequence. In the decompressor context data comprising information for relating the received compressed value to a corresponding compression sequence is maintained and the information is updated according to the received compressed values. The compressed value and the information of the corresponding compression sequence are used for mapping the compressed value into a decompressed header data field. Thus compressed data is unambiguously mapped to a full packet data header field in the decompressor side throughout the session.
Abstract:
A method is presented for implementing a cell change for a mobile station (MS) in a packet-switched cellular radio system comprising a first base station (BTSold), a second base station (BTSnew) and a controlling unit (PCU, PCUold) controlling the operation of at least the first base station (BTSold). The method comprises the steps of establishing at the controlling unit (PCU, PCUold) the knowledge about the mobile station's (MS) need for performing a cell change from the cell of the first base station (BTSold) to the cell of the second base station BTSnew) while the mobile station (MS) is still communicating with the first base station (BTSold), transmitting from the controlling unit (PCU, PCUold) towards the mobile station through the first base station (BTSold) a first message (207, 309, 410) in order to fix an oncoming first moment of lime (209) as the moment of performing cell change and from said first moment of time onwards (209) providing access for the mobile station to the cell of the second base station.
Abstract:
When uplink signalling radio bearers steal capacity from a user bearer, at least the amount of data waiting for transmission on a TBF established for the user bearer should be informed to the network. This can be done by using separate countdown values for each radio bearer, using a first countdown value for the bearer the TBF was established for and a second countdown value which indicates the total amount of data on stealing bearers, or by calculating a common countdown value indicating the total amount of data on all bearers using the TBF.
Abstract:
The invention provides a method of handing over user equipment from a source cell to a target cell in a cellular communications network. The cellular communications system comprises a plurality of control units. The method comprises the steps of receiving a message indicating if the operation of the radio link control protocol is to be continued or reset when changing cell, resetting the operation of the radio link control protocol if the message indicates that the current radio link control protocol is to be reset, or continuing the operation of said radio link control protocol if the message indicates that the radio link control protocol is to be continued.
Abstract:
A method for choosing channel coding and/or interleaving scheme is applied in a communication connection over a radio interface between a terminal and a base station of a cellular packet radio system. A certain decision-making device allocates channel coding and/or interleaving schemes to communication connections. A request message is communicated to the decision-making device, indicating a certain set of Quality of Service parameters associated with a certain first communication connection. The set of Quality of Service parameters is mapped to a certain first channel coding and/or interleaving scheme as a part of the channel coding and/or interleaving scheme allocation made by the decision-making device. The first channel coding and/or interleaving scheme is communicated to the base station and the terminal for them to apply said first channel coding and/or interleaving scheme in the first communication connection.
Abstract:
The invention relates generally to a method and an arrangement for transferring information in a packet radio service. The invention further concerns the technology of allocating resources for individual radio connections at the interface between a transmitting device and a receiving device, especially the allocation of radio resources for a packet-switched radio connection. According to the invention a new TBF is created (306) e.g. when data transfer requires a change of communication parameters (305), and thus there are no pauses in the data transfer due to the release procedures of the existing TBF. The inventive solution saves network resources and facilitates providing simultaneously different services, such as transferring IP telephony and Mobility Management messages.
Abstract:
State apparatus, and an associated method, controls a packet data service in a radio communication system in which a mobile station is operable. Control architecture is represented by operational states in which the mobile station is caused to be operated includes a control hold power save substate and a virtual traffic substate. Subsequent to a selected period of communication inactivity, the operational state of the mobile station in caused to be transitioned into a control hold power save substate in which a dedicated control channel remains allocated to the mobile station. If packet data is subsequently to be communicated by the mobile station, the channel is readily available to the mobile station to communicate the packet data thereon. When, conversely, subsequent to a period of communication inactivity, operation of the mobile station is caused to be transitioned into the virtual traffic channel substate, a communication channel is released from its allocation to the mobile station.