Abstract:
A positive electrode active material for a lithium ion secondary battery is lithium vanadium phosphate represented by a following composition expression (1) and in which a peak intensity ((002)int/(201)int) of a (002) plane normalized with respect to a peak intensity of a (201) plane and a peak intensity ((102)int/(201)int) of a (102) plane normalized with respect to a peak intensity of the (201) plane in an X-ray diffraction pattern satisfy 0.35≤(002)int/(201)int≤0.53 and 0.46≤(102)int/(201)int≤0.63, respectively, LixVOPO4 (1).
Abstract:
Stabilized lithium powder according to an embodiment of this disclosure contains lithium particles and transition metal. Each lithium particle has a stabilized film on a surface thereof; the stabilized film contains an inorganic compound; and main transition metal, which is contained the most in the transition metal, is contained by 0.5×10−3 wt % or more and 11.5×10−3 wt % or less.
Abstract:
Stabilized lithium powder according to an embodiment of this disclosure includes powder particles satisfying a relation of C≦0.90, where C represents average circularity of the powder particles. And a lithium secondary battery according to an embodiment of this disclosure comprises a negative electrode doped with lithium from the stabilized lithium powder for a lithium ion second battery according to an embodiment of this disclosure, a positive electrode, and an electrolyte.
Abstract:
Stabilized lithium powder according to an embodiment of this disclosure includes lithium particles. Each lithium particle includes an inorganic compound on a surface thereof, the inorganic compound contains lithium hydroxide, and the lithium hydroxide is contained by 2.0 wt % or less relative to the entire stabilized lithium powder.