Abstract:
A positive electrode includes: a positive electrode current collector; and a positive electrode active material layer disposed on the positive electrode current collector. The positive electrode active material layer contains a lithium-containing transition metal oxide represented by composition formula (1) indicated below, and a compound represented by LiVOPO4. The lithium-containing transition metal oxide and the compound represented by LiVOPO4 are dispersed in the positive electrode active material layer. LitNixCoyAlzO2 (1) where 0.9
Abstract:
A positive electrode active material includes: a lithium complex oxide expressed by chemical formula (1); and a highly thermal conductive compound having thermal conductivity of 10 W/m·K or more, the chemical formula (1) being LixM1yM21-yO2 (1) where M1 is at least one metal selected from the group consisting of Ni, Co, and Mn, M2 is at least one metal selected from the group consisting of Al, Fe, Ti, Cr, Mg, Cu, Ga, Zn, Sn, B, V, Ca, and Sr, and x and y are numbers such that 0.05≦x≦1.2 and 0.3≦y≦1.
Abstract:
A non-aqueous electrolyte secondary battery in which a potential of a metal layer in an exterior body is kept noble, and corrosion can be suppressed, including: a power generation element wherein a positive electrode and a negative electrode are opposed to each other with a separator interposed therebetween, and the negative electrode is disposed on an outer side than the positive electrode; and an exterior body which covers the power generation element, and has a metal layer and a resin layer which covers both surfaces of the metal layer, and an average thickness t1 of a first part of the exterior body which covers upper and lower surfaces of the power generation element in a lamination direction of the power generation element and an average thickness t2 of a second part of the exterior body which covers side surfaces of the power generation element satisfy a relationship of t2/t1
Abstract:
A positive electrode active material for lithium ion secondary battery includes: active material particles including one or more compounds including Li and a transition metal; and a coating layer coating at least a part of a surface of the active material particles. The coating layer includes at least one of graphene or multilayer graphene The coating layer has a Raman spectrum with a G band (a peak of 1530 cm−1 to 1630 cm−1), a D band (a peak of 1300 cm−1 to 1400 cm−1), and a 2D band (a peak of 2650 cm−1 to 2750 cm−1). At least the intensity of the 2D band normalized by the intensity of the G band (2Dint/Gint) satisfies 0.05≦2Dint/Gint.
Abstract:
An active material has a layered structure and a composition represented by the following formula (1) LiyNiaCobMncMdOx . . . (1), wherein M is at least one selected from Al, Si, Zr, Ti, Fe, Mg, Nb, Ba and V, and a, b, c, d, x and y satisfy 1.9≦(a+b+c+d+y)≦2.1, 1.0
Abstract translation:活性物质具有层状结构和由下式(1)LiYNiaCobMncMdOx表示的组成。 。 。 (1)其中M为选自Al,Si,Zr,Ti,Fe,Mg,Nb,Ba和V中的至少一种,a,b,c,d,x和y满足1.9 @(a + b + c + d + y)@ 2.1,1.0
Abstract:
In this non-aqueous electrolyte secondary battery, a positive terminal and a negative terminal extend in a first direction, protrude from a laminated cell stack, and are provided so that a center line is interposed therebetwen, the center line passing through a midpoint of both ends of the laminated cell stack in a second direction orthogonal to the first direction and extending in the first direction when the laminated cell stack is seen in plan view, and a first terminal with higher heat dissipation efficiency among the positive terminal and the negative terminal is provided in a location closer to the center line than a location of a second terminal with lower heat dissipation efficiency among the positive terminal and the negative terminal.
Abstract:
A positive electrode active material for a lithium ion secondary battery contains: a first compound represented by chemical formula Lix(NiyMa1-y)O2 (0.95≦x≦1.05, 0.70≦y≦0.95, where Ma is at least one element selected from Co, Mn, V, Ti, Fe, Zr, Nb, Mo, Al, and W); and a second compound represented by chemical formula LiVOPO4. W>5.0° C., where W is a full width at half maximum of an exothermic peak obtained between 150° C. and 260° C. by differential scanning calorimetry (DSC) performed on a mixture of the first compound and the second compound under a condition of 5° C./min.
Abstract:
A non-aqueous electrolytic liquid secondary battery wherein a potential of a metal layer in an exterior body is kept high, and corrosion can be suppressed, wherein an average thickness t1 of a first part of an exterior body covering a first side surface where a negative and a positive electrode terminal of a power generation element exist is different from an average thickness t2 of a second part of the exterior body covering a second side surface that intersects the first. In plan view of the power generation element from a lamination direction, in a second direction orthogonal to a first direction in which the electrode terminals extend, the relationship of t1 t2 is satisfied when the width of the negative electrode is smaller than the positive.
Abstract:
A positive electrode active material for a lithium ion secondary battery includes: a first active material selected from active materials represented by composition formula (1); and a second active material represented by composition formula (2). A ratio a/b of an average particle diameter a of the first active material to an average particle diameter b of the second active material is in a range of 1≦a/b≦60. LiwNix(M1)y(M2)zO2 (1) where M1 is at least one element selected from Co and Mn, M2 is at least one element selected from Al, Fe, Cr, Ba, Mn, and Mg, 0.9
Abstract:
A positive electrode active material contains a compound represented by a chemical formula LiVOPO4. A crystal system of the compound is an orthorhombic system, and the amount of tetravalent V of the compound is 27.7 mass % or more and 28.2 mass % or less.