Abstract:
A horological movement includes an escapement with a magnetic system to generate magnetic force impulses, so as to sustain the oscillation of the mechanical resonator associated with the escapement. In order to make possible an effective self-starting of the assembly formed of the mechanical resonator and of the escapement during a winding of the barrel, after a stop of the horological movement due to the unwound barrel spring, the escape wheel includes teeth and the pallet assembly includes two mechanical pallet-stones arranged to receive, upon starting, at least one mechanical force impulse of the escape wheel via one of the teeth thereof, the mechanical force impulse generating a starting force torque on the pallet assembly that is transmitted to the balance of the mechanical resonator to begin an oscillation of the latter so that the assembly can operate normally after a starting phase.
Abstract:
Method of regulating the frequency of a resonator mechanism around its natural frequency, this mechanism including an elastic return means with a balance spring or a torsion wire, wherein a regulator device acts on this resonator mechanism with a periodic motion, with a regulation frequency which is comprised between 0.9 times and 1.1 times the value of an integer multiple between 2 and 10 of this natural frequency, controlling a periodic variation in the real part and/or the imaginary part of the rigidity of this elastic return means, this method being applied to a timepiece movement comprising a resonator mechanism of this type and including a regulator device arranged to control a periodic variation in the rigidity of this elastic return means.
Abstract:
Method of regulating the frequency of a resonator mechanism around its natural frequency, this mechanism including an elastic return means with a balance spring or a torsion wire, wherein a regulator device acts on this resonator mechanism with a periodic motion, with a regulation frequency which is comprised between 0.9 times and 1.1 times the value of an integer multiple between 2 and 10 of this natural frequency, controlling a periodic variation in the real part and/or the imaginary part of the rigidity of this elastic return means, this method being applied to a timepiece movement comprising a resonator mechanism of this type and including a regulator device arranged to control a periodic variation in the rigidity of this elastic return means.
Abstract:
A horological movement including a mechanical resonator and a hybrid escapement including an escapement wheel and a pallet assembly with at least one magnetic pallet-stone formed of a magnet and associated with a mechanical banking, the escapement wheel including a periodic magnetised structure defining increasing gradients of magnetic potential energy for the magnetic pallet-stone, and protruding parts associated with the increasing gradients of magnetic potential energy. When the force torque is equal to a nominal force torque or has a value within at least an upper part of a given range of values, one of the protruding parts of the escapement wheel is subjected to at least one shock on the mechanical banking of the pallet assembly after the magnetic pallet-stone has climbed any one of the increasing gradients of magnetic potential energy, thus dissipating at least partially a kinetic energy of the escapement wheel.
Abstract:
A timepiece movement includes a magnetic escapement formed of a magnetic escape wheel with an annular magnetized structure and a pallet fork whose shaft is formed by a ferromagnetic material. The pallet shaft exerts on the escape wheel a magnetic disturbance torque due to the fact that the annular magnetized structure exhibits an angular variation of at least one defining physical parameter thereof, such that the magnetic attraction varies as a function of the angular position of the escape wheel and has a tangential component. A magnetic compensation pin is incorporated in the timepiece movement, this magnetic compensation pin being arranged such that the second magnetic disturbance torque that it exerts on the escape wheel exhibits an angular phase shift relative to the first magnetic disturbance torque generated by the pallet shaft, so as to compensate largely for this first magnetic disturbance torque.
Abstract:
Timepiece resonator oscillating at a natural frequency, comprising one oscillating member and oscillation maintenance means, this oscillating member carrying a regulator oscillating at a regulation frequency comprised between 0.9 times and 1.1 times the value of an integer multiple greater than or equal to 2 of the natural frequency, this resonator is included in a timepiece movement for a timepiece, particularly a watch, and this regulator imposes a periodic modulation of the resonant frequency and/or quality factor and/or point of rest of this resonator, with this regulation frequency.
Abstract:
An oscillator includes a resonator, which has an inertial mass returned by an elastic return and carries entry and exit pallets cooperating with teeth of an escape wheel each provided with a magnet. Each pallet includes a magnetic arrangement, with an annular sector, centred on the axis of oscillation of the resonator, defining a first magnetic barrier area extending above and/or below a mechanical pallet-stone of the entry pallet or exit pallet, over the entire length of this mechanical pallet-stone acting as support for the teeth during the supplementary arc, in order to form a magnetic cylinder escapement mechanism.
Abstract:
A timepiece assembly including a combined resonator with at least two degrees of freedom which includes a first linear or rotary oscillator with reduced amplitude in a first direction relative to which oscillates a second linear or rotary oscillator with reduced amplitude in a second direction substantially orthogonal to the first direction. The rotary oscillator includes a second weight carrying a sliding-block. A wheel set is arranged for application of a torque to the resonator, the wheel set including a groove in which the sliding-block slides with minimal play. The sliding-block is arranged at least either to follow curvature of the groove when present, or to rub with friction in the groove, or to repel the inner lateral surfaces of the groove by magnetically or electrically charged surfaces in the sliding-block.
Abstract:
A horological movement includes a resonator and an escapement wheel with flexible teeth, and an anchor formed of two mechanical pallets capable of abutting, when the anchor switches between its two rest positions, with any one of the flexible teeth depending on the angular position of the escapement wheel. Each flexible tooth is arranged to bend by undergoing an elastic deformation under a radial force that can be exerted by one of the two mechanical pallets abutting against this flexible tooth while the escapement wheel has an unfavourable angular position and the resonator is braked by the anchor. Each tooth has an elastic capacity to elastically absorb, in a radial direction, most of a maximum mechanical energy that the mechanical resonator may have during normal operation of the horological movement, to avoid breakage or deterioration of the escapement.
Abstract:
A method for maintaining and regulating frequency of a timepiece resonator mechanism around its natural frequency, the method including: at least one regulator device acting on the resonator mechanism with a periodic motion, to impose a periodic modulation of resonant frequency or quality factor or a position of a point of rest of the resonator mechanism, with a regulation frequency between 0.9 times and 1.1 times the value of an integer multiple of the natural frequency, the integer being greater than or equal to 2 and less than or equal to 10, and the periodic motion imposes a periodic modulation of the quality factor of the resonator mechanism, by acting on losses and/or damping and/or friction of the resonator mechanism.