ROBOT CONTROL METHOD, ROBOT AND COMPUTER-READABLE STORAGE MEDIUM

    公开(公告)号:US20230130977A1

    公开(公告)日:2023-04-27

    申请号:US18089614

    申请日:2022-12-28

    Abstract: A method for controlling a robot comprising an end effector includes: establishing at steady state between the end effector and a working surface through a preset impedance control mechanism, and adjusting a contact force between the end effector and the working surface according to a preset desired force; obtaining a contact torque generated by the contact force; controlling the end effector to rotate according to the contact torque until a pose of the end effector is consistent with a pose of the working surface; and controlling the end effector to move tangentially along the working surface.

    ARM ANGLE INTERVAL SOLVING METHOD AND ROBOTIC ARM USING THE SAME

    公开(公告)号:US20240001546A1

    公开(公告)日:2024-01-04

    申请号:US18369225

    申请日:2023-09-18

    CPC classification number: B25J9/163 B25J9/1653

    Abstract: A robotic arm angle interval inverse solving method and a robotic arm using the same are provided. The method includes: obtaining a joint angle calculation model and a differential relationship model of a target joint of the robotic arm; obtaining extreme arm angles corresponding to a joint angle of the differential relationship model at extreme values based on the differential relationship model; obtaining a joint arm angle interval corresponding to the target joint based on the extreme arm angle and the joint angle calculation model; and obtaining a target arm angle interval corresponding to the robotic arm based on the joint arm angle interval corresponding to the target joint of the robotic arm. In comparison with the existing method to solve the arm angle interval of the robotic arm, a more accurate arm angle interval can be obtained.

    Motion control method, robot controller and computer readable storage medium

    公开(公告)号:US11938635B2

    公开(公告)日:2024-03-26

    申请号:US17702819

    申请日:2022-03-24

    CPC classification number: B25J9/1664 B25J9/1607

    Abstract: A motion control method, a robot controller, and a computer readable storage medium are provided. The method includes: calculating an inverse Jacobian matrix of a whole-body generalized coordinate vector at a current time relative to an actual task space vector of a humanoid robot; calculating a target generalized coordinate vector corresponding to a to-be-executed task space vector at a current moment by combining an actual task space vector and the to-be-executed task space vector into a null space of the inverse Jacobian matrix according to preset position constraint(s) corresponding to the whole-body generalized coordinate vector; and controlling a motion state of the humanoid robot according to the target generalized coordinate vector. In this manner, the motion of the humanoid robot is optimized as a whole to achieve the purpose of controlling the humanoid robot to avoid the limits of the motion of joints.

    MOTION CONTROL METHOD, ROBOT CONTROLLER AND COMPUTER READABLE STORAGE MEDIUM

    公开(公告)号:US20220324106A1

    公开(公告)日:2022-10-13

    申请号:US17702819

    申请日:2022-03-24

    Abstract: A motion control method, a robot controller, and a computer readable storage medium are provided. The method includes: calculating an inverse Jacobian matrix of a whole-body generalized coordinate vector at a current time relative to an actual task space vector of a humanoid robot; calculating a target generalized coordinate vector corresponding to a to-be-executed task space vector at a current moment by combining an actual task space vector and the to-be-executed task space vector into a null space of the inverse Jacobian matrix according to preset position constraint(s) corresponding to the whole-body generalized coordinate vector; and controlling a motion state of the humanoid robot according to the target generalized coordinate vector. In this manner, the motion of the humanoid robot is optimized as a whole to achieve the purpose of controlling the humanoid robot to avoid the limits of the motion of joints.

Patent Agency Ranking