REDUNDANT ROBOT JOINT ACCELERATION PLANNING METHOD, REDUNDANT ROBOT USING THE SAME, AND COMPUTER READABLE STORAGE MEDIUM

    公开(公告)号:US20230101489A1

    公开(公告)日:2023-03-30

    申请号:US17553758

    申请日:2021-12-16

    Abstract: A joint acceleration planning method, a redundant robot using the same, and a computer readable storage medium are provided. The method includes: obtaining an optimization objective function, a joint acceleration inequation constraint function and a joint acceleration equation constraint function corresponding to the optimization target from a quadratic programming function library, where the optimization objective function is an objective function obtained based on the upper and lower limits of the optimization target and a Euclidean distance algorithm; and obtaining a joint acceleration planning result by performing a quadratic optimization solving on a joint acceleration of each of the target joints of the robot at time k according to the end Cartesian space speed at time k+1, the joint parameter set of the target joints of the robot at time k, the sampling period, the optimization objective function, the joint acceleration inequation constraint function, and the joint acceleration equation constraint function.

    ROBOT CONTROL METHOD, COMPUTER-READABLE STORAGE MEDIUM, AND ROBOT

    公开(公告)号:US20230381963A1

    公开(公告)日:2023-11-30

    申请号:US18201744

    申请日:2023-05-24

    CPC classification number: B25J9/1664 B25J9/1694

    Abstract: A robot control method, a computer-readable storage medium, and a robot are provided. The method includes: obtaining first motion data, where the first motion data is human arm end motion data collected by a virtual reality device; obtaining second motion data by mapping the first motion data to a working space of an end of a robotic arm of the robot; obtaining a state of each joint of the robotic arm of the robot, and obtaining control data of the joint by performing a quadratic programming solving on the second motion data and the state of the joint; and controlling, by a motion controller of the robot, the robotic arm of the robot to move according to the obtained control data of each joint of the robot by transmitting the control data of the joint to the motion controller, so that the control method is relatively more natural, intuitive, and flexible.

    ROBOT CONTROL METHOD, ROBOT, AND COMPUTER-READABLE STORAGE MEDIUM

    公开(公告)号:US20240181633A1

    公开(公告)日:2024-06-06

    申请号:US18075450

    申请日:2022-12-06

    Abstract: A robot control method, a robot, and a computer-readable storage medium are provided. The method includes: obtaining a trajectory planning parameter of joint(s) of the robot, force data of an end of the robot, and force data of the joint(s); obtaining an end admittance compensation amount; determining a first joint parameter and a first slack variable corresponding to the end admittance compensation amount in a joint space of each of the joint(s) based on the end admittance compensation amount and the trajectory planning parameter, obtaining a joint admittance compensation amount; determining a second joint parameter based on the first joint parameter, the first slack variable, the joint admittance compensation amount, and the trajectory planning parameter; determining a target joint commanding position based on the second joint parameter; and controlling the robot to move according to the target joint commanding position.

    Redundant robot joint acceleration planning method, redundant robot using the same, and computer readable storage medium

    公开(公告)号:US11992946B2

    公开(公告)日:2024-05-28

    申请号:US17553758

    申请日:2021-12-16

    CPC classification number: B25J9/1651 B25J9/1607

    Abstract: A joint acceleration planning method, a redundant robot using the same, and a computer readable storage medium are provided. The method includes: obtaining an optimization objective function, a joint acceleration inequation constraint function and a joint acceleration equation constraint function corresponding to the optimization target from a quadratic programming function library, where the optimization objective function is an objective function obtained based on the upper and lower limits of the optimization target and a Euclidean distance algorithm; and obtaining a joint acceleration planning result by performing a quadratic optimization solving on a joint acceleration of each of the target joints of the robot at time k according to the end Cartesian space speed at time k+1, the joint parameter set of the target joints of the robot at time k, the sampling period, the optimization objective function, the joint acceleration inequation constraint function, and the joint acceleration equation constraint function.

    Robot control method, computer-readable storage medium, and robot

    公开(公告)号:US12285871B2

    公开(公告)日:2025-04-29

    申请号:US18201744

    申请日:2023-05-24

    Abstract: A robot control method, a computer-readable storage medium, and a robot are provided. The method includes: obtaining first motion data, where the first motion data is human arm end motion data collected by a virtual reality device; obtaining second motion data by mapping the first motion data to a working space of an end of a robotic arm of the robot; obtaining a state of each joint of the robotic arm of the robot, and obtaining control data of the joint by performing a quadratic programming solving on the second motion data and the state of the joint; and controlling, by a motion controller of the robot, the robotic arm of the robot to move according to the obtained control data of each joint of the robot by transmitting the control data of the joint to the motion controller, so that the control method is relatively more natural, intuitive, and flexible.

    Robot control method, robot, and computer-readable storage medium

    公开(公告)号:US12186909B2

    公开(公告)日:2025-01-07

    申请号:US18075450

    申请日:2022-12-06

    Abstract: A robot control method, a robot, and a computer-readable storage medium are provided. The method includes: obtaining a trajectory planning parameter of joint(s) of the robot, force data of an end of the robot, and force data of the joint(s); obtaining an end admittance compensation amount; determining a first joint parameter and a first slack variable corresponding to the end admittance compensation amount in a joint space of each of the joint(s) based on the end admittance compensation amount and the trajectory planning parameter; obtaining a joint admittance compensation amount; determining a second joint parameter based on the first joint parameter, the first slack variable, the joint admittance compensation amount, and the trajectory planning parameter; determining a target joint commanding position based on the second joint parameter; and controlling the robot to move according to the target joint commanding position.

    ROBOT STEP CONTROL METHOD, ROBOT CONTROL APPARATUS, AND COMPUTER READABLE STORAGE MEDIUM

    公开(公告)号:US20230234655A1

    公开(公告)日:2023-07-27

    申请号:US18091327

    申请日:2022-12-29

    CPC classification number: B62D57/032 G05D1/0212 B25J17/00 G05D2201/0217

    Abstract: A robot step control method, a robot control apparatus, and a storage medium are provided. The method includes: determining an expected support force of two legs of a biped robot according to zero-moment point planning data and actual position data of the two legs at a current moment, and determining a current desired joint posture angle of ankle joints of the two legs and a desired joint position matching an actual leg support state using a compliance control algorithm based on an expected support force of the two legs, and centroid movement planning data, centroid actual movement data, step planning data and actual force data of the two legs at the current moment. In such manner, all-direction compliant controls can be performed on a desired leg pose condition according to the actual motion status of the biped robot, thereby improving the walking stability and terrain adaptability of the biped robot.

Patent Agency Ranking