Abstract:
A flow path component includes a base portion that extends between a first circumferential side and a second circumferential side. A first wall and a second wall extend radially outward from the base portion. The first wall is axially spaced from the second wall to form a passage between the first and second walls. A slot is formed in the first circumferential side. A notch in the base portion extends in a radial direction from the passage to the slot.
Abstract:
A flow path component assembly includes a flow path component having a plurality of segments that extend circumferentially about an axis and mounted in a support structure. At least one of the plurality of segments have a first wall and a second wall that extend radially outward from a base portion. The first wall is axially spaced from the second wall. A coating is on a portion of the first wall and a portion of the second wall. The coating is in contact with a feature on the support structure.
Abstract:
A multi-plane annular brush seal includes a front plate, a back plate, and a plurality of bristles. Each of the plurality of bristles has a first lengthwise portion extending from the base end, a second lengthwise portion, and a third lengthwise portion. The front plate and back plate are configured to maintain the bristle first lengthwise portions substantially parallel to a first plane, the second lengthwise portion of the bristles through a transition region, and the bristle third lengthwise portions substantially parallel to a second plane. The first plane is skewed from the second plane by an obtuse angle. At least some of the bristle second lengthwise portions are maintained in contact with the front plate through the transition region and at least some of the bristle second lengthwise portions are maintained in contact with the back plate through the transition region.
Abstract:
A component for a gas turbine engine according to an example of the present disclosure includes, among other things, a body having circumferential sides between a forward face and an aft face, each of the circumferential sides defining a mate face, an attachment member extending from the body, and a transition member adjacent to the body and the attachment member. The transition member and the body define a slot configured to receive a seal member. The transition member is sloped inwardly from one of the circumferential sides. A method of fabricating a gas turbine engine component is also disclosed.
Abstract:
An assembly for a turbine engine includes a turbine engine first component, a turbine engine second component and a flexible seal that is attached to the first component. The flexible seal at least partially seals a gap between the first component and the second component. The flexible seal includes a mount and a finger seal that sealingly engages the second component. The mount includes a boss that sealingly engages the first component.
Abstract:
An assembly for a gas turbine engine according to an example of the present disclosure includes, among other things, a seal arc segment that has a sealing portion and a pair of opposed rails extending outwardly from the sealing portion. The sealing portion includes a sealing face dimensioned to bound a core flow path and has a backside face opposed to the sealing face. The backside face includes a first localized region, a second localized region between the pair of rails, and a third localized region. A support includes a mounting portion and a first interface portion. At least one retention pin is dimensioned to engage the first interface portion of the support and at least one of the pair of rails such that the seal arc segment is carried by the at least one retention pin. A support plate is arranged relative to the support such that the at least one retention pin is trapped between the support plate and the support. A cooling cavity is established between the support, the support plate, and the second localized region. A method of sealing is also disclosed.
Abstract:
A flow path component assembly includes a support structure. A flow path component has a plurality of segments that are arranged circumferentially about an axis and are mounted in the support structure by a carrier. At least one of the segments have a first wall axially spaced from a second wall. The first wall has first and second hooks spaced apart from one another in a circumferential direction. The second wall has third and fourth hooks spaced apart from one another in the circumferential direction. The first, second, third, and fourth hooks are in engagement with the carrier.
Abstract:
A multi-plane annular brush seal includes a front plate, a back plate, and a plurality of bristles. Each of the plurality of bristles has a first lengthwise portion extending from the base end, a second lengthwise portion, and a third lengthwise portion. The front plate and back plate are configured to maintain the bristle first lengthwise portions substantially parallel to a first plane, the second lengthwise portion of the bristles through a transition region, and the bristle third lengthwise portions substantially parallel to a second plane. The first plane is skewed from the second plane by an obtuse angle. At least some of the bristle second lengthwise portions are maintained in contact with the front plate through the transition region and at least some of the bristle second lengthwise portions are maintained in contact with the back plate through the transition region.
Abstract:
An interface within a gas turbine engine includes a multiple of segmented components, each with a segment flange with a multiple of apertures, at least one of the multiple of apertures a first slot aperture. A full ring component with a ring flange that defines a multiple ring of apertures, at least one of the multiple of ring apertures a second slot aperture, the second slot aperture transverse to the first slot aperture.
Abstract:
A gas turbine engine includes a turbine section including a plurality of blade outer air seals (BOAS) disposed therein, the BOAS including a BOAS body including a plurality of cooling holes defined in substantial conformance with a set of Cartesian coordinates as set forth in at least one of Table 1 and Table 2.