Abstract:
A turbine stator vane assembly for a gas turbine engine is disclosed and includes an airfoil rotatable about an axis transverse to an engine longitudinal axis. The airfoil includes outer walls defining an inner chamber between a pressure side and a suction side of the airfoil. At least one spindle supports rotation of the airfoil and includes a feed opening for communicating cooling air into the inner chamber. An inlet defines a passage between the feed opening and the inner chamber and includes a protrusion of the outer wall on at least one of the pressure side and suction side of the airfoil.
Abstract:
A gas turbine engine with an adjustable vane includes a platform with a hole and an aperture. A vane is supported for rotation relative to the platform by a trunion that is received in the hole. The vane has an opening that is laterally spaced from the trunion and is in alignment with the aperture. The vane includes an airfoil with a cooling passage in fluid communication with the opening.
Abstract:
A transmission mechanism includes a planet gear, a set of sun gear teeth and a set of ring gear teeth. The planet gear is configured to be mounted to a synchronization ring for rotation relative to the synchronization ring about a planet gear axis. The set of sun gear teeth are meshed with teeth of the planet gear. The set of sun gear teeth is configured to rotate and drive motion of the planet gear in a circumferential direction about an axis of the set of sun gear teeth. The set of ring gear teeth are meshed with the teeth of the planet gear. The set of sun gear teeth and the set of ring gear teeth are spaced apart from one another.
Abstract:
A gas turbine engine component includes an outer diameter endwall, an inner diameter endwall spaced radially inward of the outer diameter endwall, and at least one body supported between the outer and inner endwalls for rotation about an axis. The body includes an outer diameter surface spaced from the outer diameter endwall by a first gap and an inner diameter surface spaced from the inner diameter endwall by a second gap. The outer and inner diameter surfaces and the outer and inner diameter endwalls are configured such that the first and second gaps remain generally constant in size as the body rotates about the axis.
Abstract:
A gas turbine engine with an adjustable vane includes a platform with a hole and an aperture. A vane is supported for rotation relative to the platform by a trunion that is received in the hole. The vane has an opening that is laterally spaced from the trunion and is in alignment with the aperture. The vane includes an airfoil with a cooling passage in fluid communication with the opening.
Abstract:
A seal includes two layers, each layer including a base and fingers extending from the base. The fingers are separated by slots and the fingers include orifices. The slots of each layer are laterally spaced apart from each other. The orifices of one of the layers are partially overlapped by the orifices of the other layer so that the areas of the partially overlapped orifices extend beyond the areas of the overlapping orifices.
Abstract:
A turbine stator vane assembly for a gas turbine engine is disclosed and includes an airfoil rotatable about an axis transverse to an engine longitudinal axis. The airfoil includes outer walls defining an inner chamber between a pressure side and a suction side of the airfoil. At least one spindle supports rotation of the airfoil and includes a feed opening for communicating cooling air into the inner chamber. An inlet defines a passage between the feed opening and the inner chamber and includes a protrusion of the outer wall on at least one of the pressure side and suction side of the airfoil.
Abstract:
Airfoils are provided having a body having a leading edge, a trailing edge, a first end surface, and a second end surface opposite the first end surface, wherein (i) a first true chord length is a line extending from a first leading edge point to a first trailing edge point and (ii) a second true chord length is a line extending from a second leading edge point to a second trailing edge point, a first button located on the first end surface of the airfoil body, the first button having a first diameter and a first attachment device extending from the first button to enable rotation of the airfoil body about an attachment device axis. The first diameter is at least 15% of the first true chord length or the attachment device axis is located 10% of the first true chord length from the leading edge point.
Abstract:
A gas turbine engine component includes an outer diameter endwall, an inner diameter endwall spaced radially inward of the outer diameter endwall, and at least one body supported between the outer and inner endwalls for rotation about an axis. The body includes an outer diameter surface spaced from the outer diameter endwall by a first gap and an inner diameter surface spaced from the inner diameter endwall by a second gap. The outer and inner diameter surfaces and the outer and inner diameter endwalls are configured such that the first and second gaps remain generally constant in size as the body rotates about the axis.
Abstract:
A transmission mechanism includes a planet gear, a set of sun gear teeth and a set of ring gear teeth. The planet gear is configured to be mounted to a synchronization ring for rotation relative to the synchronization ring about a planet gear axis. The set of sun gear teeth are meshed with teeth of the planet gear. The set of sun gear teeth is configured to rotate and drive motion of the planet gear in a circumferential direction about an axis of the set of sun gear teeth. The set of ring gear teeth are meshed with the teeth of the planet gear. The set of sun gear teeth and the set of ring gear teeth are spaced apart from one another.