Abstract:
A component for a gas turbine engine comprises an airfoil body formed of a plastic. A reinforcement portion has webs formed of a metallic material and extend into the airfoil. A gas turbine engine, and a method of forming a component for use in a gas turbine engine are also disclosed.
Abstract:
An airfoil bonding system may comprise a mold tool configured to support an airfoil assembly during a bonding process. The bonding process may include applying heat and pressure to the airfoil assembly. A surface of the mold tool may complement a preselected airfoil parameter. The mold tool may maintain the airfoil assembly in the preselected airfoil parameter during the application of heat and pressure to the airfoil assembly.
Abstract:
A turbine engine fan case (48) comprises a composite body member (300) circumscribing an axis (500) and having an annular mounting portion (310, 410), a segmented polymer member (320, 330, 420, 440) along the annular mounting portion, and integrated therewith.
Abstract:
A gas turbine engine includes a liner disposed around a flowpath. The liner has a forward end, a radially outer surface, and a radially inner surface. A hole extends axially into the forward end of the liner between the radially outer surface and the radially inner surface, and an engagement member is partially disposed in the hole and extends axially forward from the forward end of the liner.
Abstract:
A method of making a liner for a turbomachinery case includes overlaying a reinforcing layer and a release layer. The method also includes spiral coiling the reinforcing layer and the release layer about the axis of the liner such that a radially inner surface of the release layer radially overlays a radially outer surface of the reinforcing layer.
Abstract:
A turbofan engine has a fan having a circumferential array of fan blades. A fan case encircles the fan. There is at least one compressor section, a combustor, and at least one turbine section. The fan case comprises a containment case and a cartridge liner carried therein. A ballistic liner encircles at least a portion of the cartridge liner and is attached thereto.
Abstract:
A blade containment system includes a plurality of circumferentially-arranged rotatable blades. Each blade has a blade compliance. An annular containment structure is arranged around the rotatable blades. The containment structure includes a liner that has a liner compliance. The blade compliance and the liner compliance are configured such that a strain induced on a respective one of the blades upon impact with the liner is less than a threshold critical strain beyond which the rotatable blades fracture.
Abstract:
A fan section of a gas turbine engine includes a fan containment case assembly includes an outer case of an aluminum alloy. The outer case extends circumferentially around an axial centerline. A thermally conforming liner assembly is located inwardly of the outer case. The thermally conforming liner assembly includes a circumferential liner of an aluminum alloy. A ballistic liner is located between the outer case and the thermally conforming liner assembly.
Abstract:
A method for installing a mounting hole through a wall of a fan case of a gas turbine engine is disclosed. The method may comprise: 1) installing a pilot hole through the wall of the fan case at an angle perpendicular to an outer surface of the wall, 2) inserting a boss through the pilot hole, 3) bonding the boss to the wall of the fan case, and 4) installing the mounting hole through the boss at an off-axis angle with respect to the angle perpendicular to the outer surface of the wall.
Abstract:
A split case assembly for a gas turbine engine includes an outer diameter case defining a partial case structure for a gas turbine engine and multiple fixed-variable vanes attached to an inner diameter surface of the outer diameter case. Each of the fixed-variable vanes protrudes radially inward from the outer diameter case. Each of the fixed-variable vanes in the plurality of fixed-variable vanes is interfaced with one of a plurality of inner diameter boxes at a radially inward end of the fixed-variable vane, such that the inner diameter boxes define an inner diameter of a flow path and the outer diameter case defines an outer diameter flow path. Each of the fixed-variable vanes are interfaced with the one of the plurality of inner diameter boxes through at least one inner diameter shoe in a plurality of inner diameter shoes.