Abstract:
Systems and method of diarization of audio files use an acoustic voiceprint model. A plurality of audio files are analyzed to arrive at an acoustic voiceprint model associated to an identified speaker. Metadata associate with an audio file is used to select an acoustic voiceprint model. The selected acoustic voiceprint model is applied in a diarization to identify audio data of the identified speaker.
Abstract:
Systems and methods of diarization using linguistic labeling include receiving a set of diarized textual transcripts. At least one heuristic is automatedly applied to the diarized textual transcripts to select transcripts likely to be associated with an identified group of speakers. The selected transcripts are analyzed to create at least one linguistic model. The linguistic model is applied to transcripted audio data to label a portion of the transcripted audio data as having been spoken by the identified group of speakers. Still further embodiments of diarization using linguistic labeling may serve to label agent speech and customer speech in a recorded and transcribed customer service interaction.
Abstract:
Systems and methods of diarization using linguistic labeling include receiving a set of diarized textual transcripts. A least one heuristic is automatedly applied to the diarized textual transcripts to select transcripts likely to be associated with an identified group of speakers. The selected transcripts are analyzed to create at least one linguistic model. The linguistic model is applied to transcripted audio data to label a portion of the transcripted audio data as having been spoken by the identified group of speakers. Still further embodiments of diarization using linguistic labeling may serve to label agent speech and customer speech in a recorded and transcripted customer service interaction.
Abstract:
A method for converting speech to text in a speech analytics system is provided. The method includes receiving audio data containing speech made up of sounds from an audio source, processing the sounds with a phonetic module resulting in symbols corresponding to the sounds, and processing the symbols with a language module and occurrence table resulting in text. The method also includes determining a probability of correct translation for each word in the text, comparing the probability of correct translation for each word in the text to the occurrence table, and adjusting the occurrence table based on the probability of correct translation for each word in the text.
Abstract:
Methods, systems, and computer readable media for automated transcription model adaptation includes obtaining audio data from a plurality of audio files. The audio data is transcribed to produce at least one audio file transcription which represents a plurality of transcription alternatives for each audio file. Speech analytics are applied to each audio file transcription. A best transcription is selected from the plurality of transcription alternatives for each audio file. Statistics from the selected best transcription are calculated. An adapted model is created from the calculated statistics.
Abstract:
Systems and methods of diarization using linguistic labeling include receiving a set of diarized textual transcripts. A least one heuristic is automatedly applied to the diarized textual transcripts to select transcripts likely to be associated with an identified group of speakers. The selected transcripts are analyzed to create at least one linguistic model. The linguistic model is applied to transcripted audio data to label a portion of the transcripted audio data as having been spoken by the identified group of speakers. Still further embodiments of diarization using linguistic labeling may serve to label agent speech and customer speech in a recorded and transcripted customer service interaction.
Abstract:
Systems and method of diarization of audio files use an acoustic voiceprint model. A plurality of audio files are analyzed to arrive at an acoustic voiceprint model associated to an identified speaker. Metadata associate with an audio file is used to select an acoustic voiceprint model. The selected acoustic voiceprint model is applied in a diarization to identify audio data of the identified speaker.
Abstract:
Systems and methods of diarization using linguistic labeling include receiving a set of diarized textual transcripts. A least one heuristic is automatedly applied to the diarized textual transcripts to select transcripts likely to be associated with an identified group of speakers. The selected transcripts are analyzed to create at least one linguistic model. The linguistic model is applied to transcripted audio data to label a portion of the transcripted audio data as having been spoken by the identified group of speakers. Still further embodiments of diarization using linguistic labeling may serve to label agent speech and customer speech in a recorded and transcripted customer service interaction.
Abstract:
Systems and methods of diarization using linguistic labeling include receiving a set of diarized textual transcripts. A least one heuristic is automatedly applied to the diarized textual transcripts to select transcripts likely to be associated with an identified group of speakers. The selected transcripts are analyzed to create at least one linguistic model. The linguistic model is applied to transcripted audio data to label a portion of the transcripted audio data as having been spoken by the identified group of speakers. Still further embodiments of diarization using linguistic labeling may serve to label agent speech and customer speech in a recorded and transcripted customer service interaction.
Abstract:
Systems and method of diarization of audio files use an acoustic voiceprint model. A plurality of audio files are analyzed to arrive at an acoustic voiceprint model associated to an identified speaker. Metadata associate with an audio file is used to select an acoustic voiceprint model. The selected acoustic voiceprint model is applied in a diarization to identify audio data of the identified speaker.