Abstract:
The invention provides a wind turbine comprising a nacelle and a rotor being rotatable about an axis and relative to the nacelle. The rotor comprises a plurality of blades mounted on a rotor-centre-structure and is adapted to be parked in a plurality of parking positions. Each of the parking positions provides at least two simultaneously appearing passages suitable for passage of personnel from the nacelle into an inner space in the rotor-centre-structure. Each passage is formed by a nacelle-opening into the nacelle in communication with a matching RCS-opening into the rotor-centre-structure.
Abstract:
The invention provides a wind turbine comprising a nacelle and a rotor being rotatable about an axis and relative to the nacelle. The rotor comprises a plurality of blades mounted on a rotor-centre-structure and is adapted to be parked in a plurality of parking positions. Each of the parking positions provides at least two simultaneously appearing passages suitable for passage of personnel from the nacelle into an inner space in the rotor-centre-structure. Each passage is formed by a nacelle-opening into the nacelle in communication with a matching RCS-opening into the rotor-centre-structure.
Abstract:
A hub for a wind turbine and a method for fabricating the hub are disclosed. The hub comprises a continuous shell forming a hollow body with a main shaft flange adapted to connect the hub to a main shaft, and one or more blade flanges, each blade flange being adapted to connect the hub to a wind turbine blade. The hub further comprises at least two hub parts, each hub part being casted separately from a castable material, and each hub part being subsequently connected to at least one other hub part via one or more connecting portions, so that at least one blade flange and/or the main shaft flange comprises a section forming part of or being attached to one of the hub parts and a section forming part of or being attached to another hub part, thereby ensuring that the casted parts have a size and a weight which are manageable during the manufacture, in particular during the casting. The hub may comprise one or more reinforcement elements arranged at or near the blade flange(s), e.g., comprising an inner wall arranged at a distance to the continuous shell, thereby forming a cavity between the inner wall and the continuous shell. This allows the regions between the blade flanges to be small or narrow, thereby reducing the size and weight of the hub, while maintaining a sufficient strength and stiffness of these regions.