Abstract:
The present disclosure generally relates to the use of a self-propelled underwater vehicle for seismic data acquisition. The self-propelled underwater vehicle is adapted to gather seismic data from the seafloor and transmit such data to a control vessel. The self-propelled underwater vehicle may be redeployed to several seafloor locations during a seismic survey. Methods for real-time modeling of a target zone and redeployment of the self-propelled underwater vehicle based on the modeling are also described.
Abstract:
The present disclosure generally relates to the use of a self-propelled underwater vehicle for seismic data acquisition. The self-propelled underwater vehicle is adapted to gather seismic data from the seafloor and transmit such data to a control vessel. The self-propelled underwater vehicle may be redeployed to several seafloor locations during a seismic survey. Methods for real-time modeling of a target zone and redeployment of the self-propelled underwater vehicle based on the modeling are also described.
Abstract:
To acquire near-zero offset survey data, a survey source and a first streamer attached to the survey source are provided, where the first streamer has at least one survey receiver. A second streamer separate from the survey source and the first streamer includes survey receivers. Near-zero offset data is measured using the at least one survey receiver of the first streamer.
Abstract:
A seismic land vibrator, comprising a baseplate comprising a substantially flat, rigid member; at least one driven member that is connected with the baseplate and extends in a direction that is substantially perpendicular to baseplate; a rotation sensor that is coupled to the baseplate and adapted to provide a signal that is indicative of rotational movement of at least a portion of the baseplate.
Abstract:
To perform noise attenuation for seismic surveying, a sensor assembly is deployed on a ground surface, where the sensor assembly has a seismic sensor to measure seismic waves propagated through a subterranean structure, and a divergence sensor comprising a pressure sensor to measure noise. First data is received from the seismic sensor, and second data is received from the divergence sensor. The first data and the second data are combined to attenuate noise in the first data.