Abstract:
In a first aspect, a method for use in a time lapse, marine seismic survey includes accessing a set of acquired, multicomponent seismic data; and interpolating a set of time lapse seismic data from the acquired seismic data. In other aspects, a program storage medium is encoded with instructions that, when executed by a computing device, perform the above method and a computing apparatus programmed to perform one or more of such methods.
Abstract:
In a first aspect, a method for use in a time lapse, marine seismic survey includes accessing a set of acquired, multicomponent seismic data; and interpolating a set of time lapse seismic data from the acquired seismic data. In other aspects, a program storage medium is encoded with instructions that, when executed by a computing device, perform the above method and a computing apparatus programmed to perform one or more of such methods.
Abstract:
A data set can be corrected for the effects of interface waves by interferometrically measuring an interface wavefield between each of a plurality of planned locations within a survey area; and correcting survey data acquired in the survey area for the interface waves. The interface wavefield may be interferometrically measured by receiving a wavefield including interface waves propagating within a survey area, the survey area including a plurality of planned survey locations therein; generating interface wave data representative of the received interface wavefield; and constructing a Green's function between each of the planned survey positions from the interface wave data. Other aspects include an apparatus by which the interface wavefield may be interferometrically measured and a computer apparatus programmed to correct the seismic data using the interferometrically measured interface wave data.
Abstract:
To perform noise attenuation for seismic surveying, a sensor assembly is deployed on a ground surface, where the sensor assembly has a seismic sensor to measure seismic waves propagated through a subterranean structure, and a divergence sensor comprising a pressure sensor to measure noise. First data is received from the seismic sensor, and second data is received from the divergence sensor. The first data and the second data are combined to attenuate noise in the first data.