摘要:
Techniques and systems are disclosed for estimating an unknown image from a plurality of cone-beam computed tomography (CBCT) image projections. The unknown image is estimated by solving for minima of an expression comprising a fidelity term that is a function of the plurality of image projections and a regularization term that is responsive to a sparsity of the CBCT image projections. The minima of the expression is iteratively estimated by calculating an image gradient of the function, determining a step size based on a based on a Barzilai-Borwein (BB) formulation and adjusting the minima estimate using the projected image gradient and a step size.
摘要:
Techniques and systems are disclosed for estimating an un-known image from a plurality of cone-beam computed tomography (CBCT) image projections. The unknown image is estimated by solving for minima of an expression comprising a fidelity term that is a function of the plurality of image projections and a regularization term that is responsive to a sparsity of the CBCT image projections. The minima of the expression is iteratively estimated by calculating an image gradient of the function, determining a step size based on a based on a Barzilai-Borwein (BB) formulation and adjusting the minima estimate using the projected image gradient and a step size.
摘要:
Among the various aspects of the present disclosure is the provision of methods and systems for real-time 3D MRI that combines dynamic keyhole data sharing with super-resolution imaging methods to improve real-time 3D MR images in the presence of motion.
摘要:
A computer-implemented method for correcting artifacts within CT images of a subject includes providing iteratively correcting a CT volumetric image with a high-contrast mask by overpainting the high-contrast mask within CT volumetric image set by evaluating a model function and updating the CT projections to reflect the overpainting using a gradient descent based on previous overpainted CT projections, back-projecting the corrected CT projections to produce a corrected volumetric image set, and comparing the corrected CT volumetric image set against a previous corrected CT volumetric image set until convergence. The original voxels overpainted by the high-contrast mask are re-inserted into the converged CT volumetric image to produce the final CT volumetric image set.
摘要:
Among the various aspects of the present disclosure is the provision of methods and systems for real-time 3D MRI that combines dynamic keyhole data sharing with super-resolution imaging methods to improve real-time 3D MR images in the presence of motion.
摘要:
The present disclosure describes a computer-implemented method of transforming a low-resolution MR image to a high-resolution MR image using a deep CNN-based MRI SR network and a computer-implemented method of transforming an MR image to a pseudo-CT (sCT) image using a deep CNN-based sCT network. The present disclosure further describes a MR image-guided radiation treatment system that includes a computing device to implement the MRI SR and CT networks and to produce a radiation plan based in the resulting high resolution MR images and sCT images.
摘要:
A computer-implemented method for correcting artifacts within CT images of a subject includes providing iteratively correcting a CT volumetric image with a high-contrast mask by overpainting the high-contrast mask within CT volumetric image set by evaluating a model function and updating the CT projections to reflect the overpainting using a gradient descent based on previous overpainted CT projections, back-projecting the corrected CT projections to produce a corrected volumetric image set, and comparing the corrected CT volumetric image set against a previous corrected CT volumetric image set until convergence. The original voxels overpainted by the high-contrast mask are re-inserted into the converged CT volumetric image to produce the final CT volumetric image set.
摘要:
The present disclosure is directed to a computer-implemented method for designing a patient-specific brachytherapy (BT) tandem applicator. The method is implemented using at least one processor in communication with at least one memory. The method includes receiving a radiation treatment plan for treating a region of interest. The radiation treatment plan includes a prescribed radiation dosage and patient anatomical data of the region of interested to be treated. The method also includes applying an inverse planning optimization model to determine an optimal thickness of an interior surface of the tandem applicator at a plurality of dwell positions within the region of interest. The method also includes generating a schedule of dwell times for the tandem applicator based on the generated position-dependent thickness profile. The method also includes transmitting design instructions to a 3D printer for fabrication of the tandem applicator.