RELATED TO GENERATING A ROBOT CONTROL POLICY FROM DEMONSTRATIONS COLLECTED VIA KINESTHETIC TEACHING OF A ROBOT

    公开(公告)号:US20190118375A1

    公开(公告)日:2019-04-25

    申请号:US16230478

    申请日:2018-12-21

    Abstract: Generating a robot control policy that regulates both motion control and interaction with an environment and/or includes a learned potential function and/or dissipative field. Some implementations relate to resampling temporally distributed data points to generate spatially distributed data points, and generating the control policy using the spatially distributed data points. Some implementations additionally or alternatively relate to automatically determining a potential gradient for data points, and generating the control policy using the automatically determined potential gradient. Some implementations additionally or alternatively relate to determining and assigning a prior weight to each of the data points of multiple groups, and generating the control policy using the weights. Some implementations additionally or alternatively relate to defining and using non-uniform smoothness parameters at each data point, defining and using d parameters for stiffness and/or damping at each data point, and/or obviating the need to utilize virtual data points in generating the control policy.

    GENERATING A ROBOT CONTROL POLICY FROM DEMONSTRATIONS COLLECTED VIA KINESTHETIC TEACHING OF A ROBOT

    公开(公告)号:US20180222045A1

    公开(公告)日:2018-08-09

    申请号:US15428916

    申请日:2017-02-09

    Abstract: Generating a robot control policy that regulates both motion control and interaction with an environment and/or includes a learned potential function and/or dissipative field. Some implementations relate to resampling temporally distributed data points to generate spatially distributed data points, and generating the control policy using the spatially distributed data points. Some implementations additionally or alternatively relate to automatically determining a potential gradient for data points, and generating the control policy using the automatically determined potential gradient. Some implementations additionally or alternatively relate to determining and assigning a prior weight to each of the data points of multiple groups, and generating the control policy using the weights. Some implementations additionally or alternatively relate to defining and using non-uniform smoothness parameters at each data point, defining and using d parameters for stiffness and/or damping at each data point, and/or obviating the need to utilize virtual data points in generating the control policy.

    MACHINE LEARNING METHODS AND APPARATUS FOR AUTOMATED ROBOTIC PLACEMENT OF SECURED OBJECT IN APPROPRIATE LOCATION

    公开(公告)号:US20210229276A1

    公开(公告)日:2021-07-29

    申请号:US17230628

    申请日:2021-04-14

    Abstract: Training and/or use of a machine learning model for placement of an object secured by an end effector of a robot. A trained machine learning model can be used to process: (1) a current image, captured by a vision component of a robot, that captures an end effector securing an object; (2) a candidate end effector action that defines a candidate motion of the end effector; and (3) a target placement input that indicates a target placement location for the object. Based on the processing, a prediction can be generated that indicates likelihood of successful placement of the object in the target placement location with application of the motion defined by the candidate end effector action. At many iterations, the candidate end effector action with the highest probability is selected and control commands provided to cause the end effector to move in conformance with the corresponding end effector action. When at least one release criteria is satisfied, control commands can be provided to cause the end effector to release the object, thereby leading to the object being placed in the target placement location.

    Generating a robot control policy from demonstrations collected via kinesthetic teaching of a robot

    公开(公告)号:US10391632B2

    公开(公告)日:2019-08-27

    申请号:US16230478

    申请日:2018-12-21

    Abstract: Generating a robot control policy that regulates both motion control and interaction with an environment and/or includes a learned potential function and/or dissipative field. Some implementations relate to resampling temporally distributed data points to generate spatially distributed data points, and generating the control policy using the spatially distributed data points. Some implementations additionally or alternatively relate to automatically determining a potential gradient for data points, and generating the control policy using the automatically determined potential gradient. Some implementations additionally or alternatively relate to determining and assigning a prior weight to each of the data points of multiple groups, and generating the control policy using the weights. Some implementations additionally or alternatively relate to defining and using non-uniform smoothness parameters at each data point, defining and using d parameters for stiffness and/or damping at each data point, and/or obviating the need to utilize virtual data points in generating the control policy.

    GENERATING A ROBOT CONTROL POLICY FROM DEMONSTRATIONS COLLECTED VIA KINESTHETIC TEACHING OF A ROBOT

    公开(公告)号:US20230150126A1

    公开(公告)日:2023-05-18

    申请号:US18097153

    申请日:2023-01-13

    Abstract: Generating a robot control policy that regulates both motion control and interaction with an environment and/or includes a learned potential function and/or dissipative field. Some implementations relate to resampling temporally distributed data points to generate spatially distributed data points, and generating the control policy using the spatially distributed data points. Some implementations additionally or alternatively relate to automatically determining a potential gradient for data points, and generating the control policy using the automatically determined potential gradient. Some implementations additionally or alternatively relate to determining and assigning a prior weight to each of the data points of multiple groups, and generating the control policy using the weights. Some implementations additionally or alternatively relate to defining and using non-uniform smoothness parameters at each data point, defining and using d parameters for stiffness and/or damping at each data point, and/or obviating the need to utilize virtual data points in generating the control policy.

    LEARNING ROBOTIC SKILLS WITH IMITATION AND REINFORCEMENT AT SCALE

    公开(公告)号:US20220410380A1

    公开(公告)日:2022-12-29

    申请号:US17843288

    申请日:2022-06-17

    Abstract: Utilizing an initial set of offline positive-only robotic demonstration data for pre-training an actor network and a critic network for robotic control, followed by further training of the networks based on online robotic episodes that utilize the network(s). Implementations enable the actor network to be effectively pre-trained, while mitigating occurrences of and/or the extent of forgetting when further trained based on episode data. Implementations additionally or alternatively enable the actor network to be trained to a given degree of effectiveness in fewer training steps. In various implementations, one or more adaptation techniques are utilized in performing the robotic episodes and/or in performing the robotic training. The adaptation techniques can each, individually, result in one or more corresponding advantages and, when used in any combination, the corresponding advantages can accumulate. The adaptation techniques include Positive Sample Filtering, Adaptive Exploration, Using Max Q Values, and Using the Actor in CEM.

    Generating a robot control policy from demonstrations collected via kinesthetic teaching of a robot

    公开(公告)号:US10207404B2

    公开(公告)日:2019-02-19

    申请号:US15428916

    申请日:2017-02-09

    Abstract: Generating a robot control policy that regulates both motion control and interaction with an environment and/or includes a learned potential function and/or dissipative field. Some implementations relate to resampling temporally distributed data points to generate spatially distributed data points, and generating the control policy using the spatially distributed data points. Some implementations additionally or alternatively relate to automatically determining a potential gradient for data points, and generating the control policy using the automatically determined potential gradient. Some implementations additionally or alternatively relate to determining and assigning a prior weight to each of the data points of multiple groups, and generating the control policy using the weights. Some implementations additionally or alternatively relate to defining and using non-uniform smoothness parameters at each data point, defining and using d parameters for stiffness and/or damping at each data point, and/or obviating the need to utilize virtual data points in generating the control policy.

    Machine learning methods and apparatus for automated robotic placement of secured object in appropriate location

    公开(公告)号:US11607807B2

    公开(公告)日:2023-03-21

    申请号:US17230628

    申请日:2021-04-14

    Abstract: Training and/or use of a machine learning model for placement of an object secured by an end effector of a robot. A trained machine learning model can be used to process: (1) a current image, captured by a vision component of a robot, that captures an end effector securing an object; (2) a candidate end effector action that defines a candidate motion of the end effector; and (3) a target placement input that indicates a target placement location for the object. Based on the processing, a prediction can be generated that indicates likelihood of successful placement of the object in the target placement location with application of the motion defined by the candidate end effector action. At many iterations, the candidate end effector action with the highest probability is selected and control commands provided to cause the end effector to move in conformance with the corresponding end effector action. When at least one release criteria is satisfied, control commands can be provided to cause the end effector to release the object, thereby leading to the object being placed in the target placement location.

Patent Agency Ranking