摘要:
A printing apparatus and a printing method are capable of not permitting a printable ratio of each printing scan to have a deviation and, even if a sudden conveyance shift occurs, outputting a uniform and smooth image in the whole area of the print medium. In order to achieve this, when performing multipass printing of 2M passes, a mask such that a printable area overlapping ratio that relates to straddling between Pass M and Pass M+1 is set higher than the printable area overlapping ratio that relates to straddling between two other consecutive passes is used. By this configuration, even if a complementary relationship of dots collapses due to a sudden conveyance shift or the like and thereby a density reduction is anticipated, by an overlapped dot being separated, increase of the density is accelerated, and it becomes possible to mitigate the above-mentioned density reduction.
摘要翻译:打印装置和打印方法能够不允许每个打印扫描的可打印比率具有偏差,并且即使发生突然的输送偏移,在打印介质的整个区域中输出均匀且平滑的图像。 为了实现这一点,当进行2M遍的多次打印时,将与Pass M和Pass M + 1之间的跨越相关的可打印区域重叠比设置为高于与两个之间跨越的可打印区域重叠比的掩码 使用其他连续通行证。 通过这种结构,即使由于突然的输送移动等引起的点的互补关系崩溃,从而预期密度降低,通过分离的重叠点,加速了密度的增加,并且可以减轻 上述密度降低。
摘要:
To provide a printing apparatus and a printing method capable of not permitting a printable ratio of each printing scan to have a deviation and, even if a sudden conveyance shift occurs, outputting a uniform and smooth image in the whole area of the print medium. In order to achieve this, when performing multipass printing of 2M passes, a mask such that a printable area overlapping ratio that relates to straddling between Pass M and Pass M+1 is set higher than the printable area overlapping ratio that relates to straddling between other two consecutive passes is used. By this configuration, even if a complementary relationship of dots collapses due to a sudden conveyance shift etc. and thereby a density reduction is anticipated, by an overlapped dot being separated, increase of the density is accelerated, and it becomes possible to mitigate the above-mentioned density reduction.
摘要:
An image processing apparatus includes a first generation unit configured to generate N pieces of same color multi-valued image data, a second generation unit configured to generate N pieces of quantized data by performing quantization processing on the N pieces of same color multi-valued image data, and a third generation unit configured to divide at least one piece of the N pieces of quantized data into a plurality of quantized data and generate M pieces of quantized data corresponding to the M relative movements. The M pieces of quantized data includes quantized data corresponding to an edge portion of the recording element group and quantized data corresponding to a central portion of the recording element group, and a recording duty of the quantized data corresponding to the edge portion is set lower than a recording duty of the quantized data corresponding to the central portion.
摘要:
There are provided an image processing method and an image processor which realize the processing of restricting image degradations such as “dot delay”, “banding” and “wind ripple” with a simpler circuit construction. Therefore, after the regular quantization processing is performed, in a pixel in a prohibition position the processing of limiting a predetermined quantized value to change into another quantized value is performed corresponding to the obtained quantized value and the position information of the pixel of interest. By doing this, even in the low level of the density value, it is possible to realize at a low cost the construction in which dots having different sizes are mixed for printing.
摘要:
In a 2M-pass printing operation that forms dots including overlapping dots, this invention makes an arrangement to ensure that the number of overlapping dots that are printed in a unit area in pairs of passes each straddling a print medium convey operation executed between an Mth pass and an (M+1)st pass is greater than the number of overlapping dots that are printed in pairs of passes straddling any other convey operation. This arrangement can cause two dots of the overlapping dots to be separated from each other in the event of a print position misalignment, preventing a possible density fall even in a unit area where the largest density reduction is feared to occur at time of the print position misalignment.
摘要:
Multi-valued image data corresponding to a pixel area is divided into the first scanning multi-valued data, first and second scanning common multi-valued data, and second scanning multi-valued data. A quantization processing is executed on each of the multi-valued data to generate first scanning quantized data, first and second scanning common quantized data, and second scanning quantized data. After that, these pieces of quantized data are combined for each scanning to generate first scanning combined quantized data and second scanning combined quantized data. According to this, the amount of pixels where dots are both recorded by performing a scanning by plural times (the amount of overlapping dots) is controlled, and while suppressing the image density variations, the granularity is held to a low level.
摘要:
The image processing apparatus executes quantization processing of second multi-valued image data that corresponds to a second relative movement of a plurality of relative movements based on first multi-valued image data that corresponds to a first relative movement of the plurality of relative movements, and executes quantization processing of the first multi-valued image data based on the second multi-valued image data. This makes it possible to output a high-quality image having excellent robustness and reduced graininess by controlling the overlap rate of dots that are printed by the first relative movement and the dots that are printed by the second relative movement.
摘要:
The present invention suppresses data processing load and processing time when generating density data for the same color that corresponds to a plurality of printing scans (or plurality of printing element groups) of a printing head and printing medium. In order to accomplish this, input image data is converted to a plurality of density data by referencing a three-dimensional lookup table that performs one-to-one correlation of input image data with a plurality of density data that corresponds to a plurality of relative movements (or plurality of printing element groups). By doing so, it is possible to perform a process of generating density data (CMYK) that corresponds to a plurality of relative movements (or plurality of printing element groups) from input image data at once, and thus it is possible to suppress an increase in data processing load and processing time.
摘要:
In a 2M-pass printing operation that forms dots including overlapping dots, this invention makes an arrangement to ensure that the number of overlapping dots that are printed in a unit area in pairs of passes each straddling a print medium convey operation executed between an Mth pass and an (M+1)st pass is greater than the number of overlapping dots that are printed in pairs of passes straddling any other convey operation. This arrangement can cause two dots of the overlapping dots to be separated from each other in the event of a print position misalignment, preventing a possible density fall even in a unit area where the largest density reduction is feared to occur at time of the print position misalignment.
摘要:
The present invention suppresses data processing load and processing time when generating density data for the same color that corresponds to a plurality of printing scans (or plurality of printing element groups) of a printing head and printing medium. In order to accomplish this, input image data is converted to a plurality of density data by referencing a three-dimensional lookup table that performs one-to-one correlation of input image data with a plurality of density data that corresponds to a plurality of relative movements (or plurality of printing element groups). By doing so, it is possible to perform a process of generating density data (CMYK) that corresponds to a plurality of relative movements (or plurality of printing element groups) from input image data at once, and thus it is possible to suppress an increase in data processing load and processing time.