摘要:
A manufacture process of non-oriented silicon steel with high magnetic induction includes smelting and casting steel having a chemical composition by weight percent: Si 0.1˜1%, Al 0.005˜1.0%, C≦0.004%, Mn=0.10˜1.50%, P≦0.2%, S≦0.005%, N≦0.002, Nb+V+Ti≦0.006%, and the rest is Fe. The steel is cast into a billet, which is heated and hot-rolled to 1150˜1200° C. into a plate at a finish-rolling temperature 830˜900° C. The plate is cooled to a temperature ≧570° C. and cold-roll flattened at compression ratio 2˜5%. The flattened plate is normalized at temperature not below 950° C. for 30˜180s, and then pickled and cold-rolled into a sheet with thickness of the finished product. The sheet is finish-annealed quickly heating the sheet to 800˜1000° C. at temperature rise rate ≧100° C./s, soaking the heated sheet for 5˜60s at the temperature, and then slowly cooling the sheet to 600˜750° C.
摘要翻译:具有高磁感应性的非取向硅钢的制造方法包括以重量%计的化学组成的熔炼和铸造钢:Si 0.1〜1%,Al 0.005〜1.0%,C n N eE 0.004%,Mn = 0.10〜1.50% Pnn; 0.2%,S&NlE; 0.005%,N& NlE; 0.002,Nb + V + Ti&NlE; 0.006%,其余为Fe。 钢被铸造成坯料,将其在830〜900℃的精轧温度下进行加热并热轧至1150〜1200℃。将板冷却至570℃以上的温度, 冷轧压扁比为2〜5%。 将扁平板在不低于950℃的温度下归一化30至180秒,然后酸洗并冷轧成具有成品厚度的片材。 该片材经过完全退火,将片材快速加热至800〜1000℃,升温速度≥100℃/ s,在加热的温度下浸泡5〜60s,然后缓慢冷却至600〜 750°C
摘要:
A manufacture method of high-efficiency non-oriented silicon steel with excellent magnetic property, which comprises the following steps: 1) smelting and casting; chemical compositions of non-oriented silicon steel, by weight percent, are: C≦0.0040%, Si: 0.1˜0.8%, Al: 0.002˜1.0%, Mn: 0.10˜1.50%, P: ≦0.2%, Sb: 0.04˜0.08%, S≦0.0030%, N≦0.0020%, Ti≦0.0020%, and the rest is Fe and unavoidable inclusions; molten steel in accordance with the above compositions is smelted and then casted into billets; 2) hot-rolling and pickling; heating temperature for slab is 1100° C.˜1150° C. and finish-rolling temperature is 860° C.˜920° C.; after rolling, the hot-rolled product is air cooled, during which air cooling time t: (2+30×Sb %)s≦t≦7 s; thereafter reeling at a temperature ≧720° C. ; 3) cold-rolling; rolling to form cold-rolled plate with target thickness at a reduction ratio of 70˜18%; 4) annealing; heating up the cold-rolled plate to 800˜1000° C. at heating rate of ≧15° C./s, and holding time is 10 s˜25 s. Under the precondition to ensure magnetic properties, this invention implements low cost manufacture of high efficiency electric steel by adding elements advantageous to favorable texture during steel making, controlling contents of adverse elements and coordinating air cooling time control during hot-rolling with high temperature reeling.
摘要:
A manufacture method of high-efficiency non-oriented silicon steel with excellent magnetic property includes the steps of smelting a chemical composition of non-oriented silicon steel, by weight percent, is: C≦0.0040%, Si:0.1˜0.8%, Al:0.002˜1.0%, Mn:0.10˜1.50%, P:≦0.2%, Sb:0.04˜0.08%, S≦0.0030%, N≦0.0020%, Ti≦0.0020%, and the rest is Fe and unavoidable inclusions. The molten steel is then cast into billets which are hot-rolled into a hot-rolled product. The heating temperature for the billet is 1100°˜1150° and the finish-rolling temperature is 860°˜920°. The hot-rolled product is then air cooled for a period of time within a range determined by air cooling time t: (2+30xSb %)s≦t≦7 s. The hot-rolled product is reeled at a temperature ≧720° and cold-rolled to form cold-rolled plate with a target thickness at a reduction ratio of 70˜78% followed by heating up the cold-rolled plate to 800˜1000° at heating rate of ≧15°/s, and holding time of 10 s˜25 s.
摘要:
A non-oriented electrical steel has relative high magnetic induction and high intensity without increasing manufacturing difficulty. The weight percentage of the compositions of the electrical steel are as follows: C≦0.0040%, Si is 2.50% to 4.00%, Al is 0.20% to 0.80%, Cr is 1.0 to 8.0%, Ni is 0.5 to 5.0%, Mn≦0.50%, P≦0.30%, S≦0.0020%, N≦0.0030%, Ti≦0.0030%, Nb≦0.010%, V≦0.010%, C+S+N+Ti≦0.010%, and a balance substantially being Fe and inevitable impurities.
摘要:
A cold rolled electromagnetic steel sheet for rapid cycling synchrotron, and a manufacturing method thereof, the method includes the steps of 1) smelting and casting, the composition of the cold rolled electromagnetic steel sheet is C 0.001-0.003 wt %, Si 0.60%-0.90 wt %, Mn 0.40%-0.70 wt %, P≦0.04 wt %, Al 0.60-0.80 wt %, S≦0.0035 wt %, N≦0.003 wt %, and the rest is Fe; smelting and RH refining, and then casting to form semi-finished product; 2) hot rolling; 3) normalizing, in which the normalizing temperature is controlled between 960° C.-980° C., and the normalizing time is 30-60 sec; 4) pickling and cold rolling; 5) annealing, wherein the annealing temperature is controlled to be between 850° C.-870° C., and the annealing time is 13-15 sec; 6) obtaining non-oriented silicon steel product after coating. The cold rolled electromagnetic steel sheet of the present invention has low coercivity, specifically in case that the magnetizing intense returns to zero after reaching 10 Oersted (Oe), the coercivity of the material is Hc≦79.6 A/m; high magnetic induction, which is B50≧1.75 T; and low iron losses of P15/50≦4.2 W/kg, and the iron losses after strain-annealing is P15/50≦3.5 W/kg.